
Technical Report
Number 557

Computer Laboratory

UCAM-CL-TR-557
ISSN 1476-2986

Iota: A concurrent XML scripting
language with applications to Home

Area Networking

G.M. Bierman, P. Sewell

January 2003

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2003 G.M. Bierman, P. Sewell

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

Iota: A concurrent XML scripting language with

applications to Home Area Networks

G.M. Bierman P. Sewell
University of Cambridge Computer Laboratory,
J.J. Thomson Avenue, Cambridge, CB3 0FD.

{gmb,pes20}@cl.cam.ac.uk

Abstract

Iota is a small and simple concurrent language that provides native support for
functional XML computation and for typed channel-based communication. It has
been designed as a domain-specific language to express device behaviour within the
context of Home Area Networking.

In this paper we describe Iota, explaining its novel treatment of XML and de-
scribing its type system and operational semantics. We give a number of examples
including Iota code to program Universal Plug ’n’ Play (UPnP) devices.

Contents
1 Introduction 4

2 Language Overview and Core Syntax 5

3 Design: XML 8

4 Design: Concurrency 11

5 Application: Coding Events 12

6 Application: HAN architecture and controlling a HAN device 14

7 Application: Networking primitives 15

8 Conclusion 16

A Iota Definition 18
A.1 Syntax . 18
A.2 Typing . 21
A.3 Operational Semantics . 26

References 32

3

1 Introduction

Rapid advances in network and device technologies are accelerating the vision of pervasive
networking and ubiquitous computing. One such area is in the home: one can reasonably
expect homes in the near future to have some form of local area network (a so-called Home
Area Network, or HAN), and future consumer devices to exploit this interconnectivity.
Various media sources (e.g. TV receivers, CD players) and sinks (e.g. video displays,
amplifier/speaker combinations) will become integrated with phone access, traditional
home-automation of lighting and heating, etc. The ability to ‘script’ the whole house will
be key. Indeed, consumer device manufacturers are already formulating proposals for how
their devices may communicate and cooperate within such a future home, e.g. the XML-
based UPnP [upn00]. Software developers will face new challenges in this environment.
Typical applications will involve concurrent scripting, and some form of communication;
features that are rather heavyweight in conventional programming languages. In addition,
consumer devices will offer only a small software platform, and to reduce device time-to-
market it will be important to make code development relatively straightforward.

The AutoHAN project in the Cambridge Computer Laboratory [SGG01, BH01] is
investigating various aspects of the architecture, programming and user-interface issues
within a future Home Area Network. We have designed and implemented a domain specific
language, Iota, to address some of the software engineering issues of developing code in
this environment. Some of the problems we have addressed are:

• Concurrency: A HAN will consist of a large number of devices, executing concur-
rently, and communicating often. Thus we need a simple, lightweight, and flexible
paradigm for writing highly concurrent scripts.

• XML: It is rapidly becoming clear that XML will be the lingua franca for com-
munication in future networks. Indeed, the language for device description and
communication in the UPnP standard is XML. We need to support native syntax
for creation and examination of XML values in our programming language, rather
than simply providing library calls for dealing with XML as in Java.

• Elegance: A HAN is a critical piece of infrastructure; programmable devices need
to be reliable and have easily predictable behaviour. Given that this home setting is
unlikely to require the ultra-fast execution of code, the key problem for the software
developer is to quickly develop clear and predictable code. Thus we need a simple
programming language, with well-defined and clear semantics, and at a high level of
abstraction. The domain is intrinsically concurrent, but for writing predictable code
it is useful to have a clearly-identifiable functional fragment of the language.

• Strong typing: Strong typing is a key programming language feature for construct-
ing reliable software. Straightforward type systems for functional and concurrent
languages are well-understood, and there is a developing body of work on typing
XML computation. In the HAN setting, however, we can assume little about the
structure of XML received from other devices – in particular, there may not be
standard DTDs or Schema that it is guaranteed to conform to.

4

• Correctness: Given the importance of the correct behaviour of code executing
within the home, there will be increased pressure on software developers to assert and
verify claims of program correctness. Automated proofs of certain safety properties
may even be required. We need to develop a language that is both small enough to
feasibly reason about, and also amenable to various techniques for reasoning about
program correctness.

In this paper we describe the main design choices underlying Iota, showing how the
problems above have been addressed. We first outline the types and syntax of a core
language, in §2. The treatment of XML is discussed in §3, and that of concurrency in
§4. We give some examples of Iota programming in §5–7, showing how event primitives
can be coded up, how a UPnP device can be controlled, and some processing of XML
data obtained by HTTP. Iota has a semantic definition, comprising a type system and an
operational semantics, and has been implemented. The definition is given in the Appendix.

2 Language Overview and Core Syntax

The core of Iota is an explicitly-typed language, with types as in Figure 1. It pro-
vides several base types (distinguished only in that characters and strings are Unicode,
to correspond with XML), tuples and lists. Higher-order functions are supported, with
call-by-value semantics, and a fixed collection of ML-style exceptions can be raised and
handled. The types MU and content will be introduced in the next section, and T chan
and proc in the following section. The definition does not currently include parametric
polymorphism but, as we shall see, it does involve subtyping. (In fact, the prototype
implementation provides parametric polymorphism also.)

For concreteness we give the full syntax of the core language in Figure 2, in which constants
and other terminals are as in Figure 1. Much is standard; the novel aspects are discussed
in the subsequent sections.

5

Types T ::= bool Booleans
int Integers
char Characters
string Strings
unit Unit
T1 ∗ .. ∗ Tn Tuples n ≥ 2
T list Lists
T → T Function space
exn Exceptions
MU Mark-up
content Content (to be marked up)
T chan Channel carrying T
proc Processes

i Integer constant
b Boolean constant
c Character constant
s String constant in quotes, eg “ab”
x Identifier
ex Exception constructor
tag Tag
a Attribute name

Figure 1: Iota Types and Terminals

6

Expressions e ::= x Identifier
i, b, c, s Integer, Boolean, Character, String constant
() Unit
(e1, .., en) Tuple n ≥ 2
[] Empty List
e :: e Cons
if e then e else e Conditional
fn match Function
fr x match Recursive Function
e e Application
let dec in e Local declaration
exe Exception
raise e Raise exception
try e with match Handle exception(s)
〈te aes//〉e Markup
0 Empty process
e||e Parallel composition
new x : T in e New channel declaration
e!e Output along a channel
e?e Input from a channel
e?∗ e Replicated input

Matches match ::= p ⇒ e
p ⇒ e | match

Tag expressions te ::= tag Constant Tag
{e} Computed Tag

Attribute expression sequences aes ::= empty Empty sequence
a = e aes

Patterns p ::= ∗ : T Wildcard
x : T Variable
i, b, c, s Integer, Boolean, Character, String constant
() Unit
(p1, .., pn) Tuple n ≥ 2
[] Empty List
p :: p Cons
ex p Exception constructor pattern
〈tp aps//〉p Markup pattern

Tag Patterns tp ::= ∗ Wildcard tag pattern
tag Constant tag pattern
{x} Identifier

Attribute Patterns ap ::= ∗ Wildcard
s String
x Identifier

Attribute Pattern Sequences aps ::= empty Empty sequence
∗ Wildcard sequence
a = ap aps

Declarations dec ::= val x = e Value

Figure 2: Iota Core Language Syntax

7

3 Design: XML

One of the main design questions for Iota is how the XML computation should be typed.
There are three options:

1. not at all, i.e. treating all XML values as strings;

2. guaranteeing XML well-formedness, i.e. that opening and closing tags match and
that elements are appropriately nested; or

3. guaranteeing XML validity, i.e. well-formedness together with conformance to a
DTD, Schema, or other specification.

The last is most desirable, where feasible, as it will exclude many erroneous programs. A
number of programming-language type systems for validity have been developed, notably
those of XDuce [HP00] and XMλ [SM00]. Unfortunately in the HAN setting it is unclear
whether any single notion of schema will become widespread. There are many options – Lee
and Chu [LC00] discuss six schema languages in detail and mention four others in passing.
In fact, at the start of the Iota design we could obtain sample descriptions of a device
(a UPnP-enabled CD player) only as well-formed fragments of XML based on informal
‘templates’, rather than any DTD or Schema specification. We therefore chose option
(2), designing a type system that ensures well-formedness only. This has three further
advantages. Firstly, the type system is considerably simpler that those of [SM00, HP00].
Secondly, it allows computation of XML tags, which would be hard to statically type
in a system for validity. Thirdly, it may make it easier to write code which is robust
under future (unpredictable!) changes of device descriptions, following the ‘ignore options
that are not understood’ principle that has been so successful in network protocols. This
is especially important in the highly dynamic world of home device manufacture, where
devices are updated rapidly and there is intense competition between manufacturers –
universal agreement would be desirable (perhaps using the WSDL language, developed for
specifying web services), but seems most unlikely.

One of our design goals was to allow XML to appear in the code in as close a form to the
XML standard as possible, with little syntactic ‘noise’ (beyond that intrinsic to the stan-
dard, of course). This contrasts with work where XML elements are coded up using existing
language features, e.g. the Haskell XML embedding of Wallace and Runciman [WR99]. A
simple XML element can be written as an Iota value as below

〈person age = “3”〉“Tim”〈/person〉

which is as in the standard except for the quotes of “Tim”. These are required to dis-
ambiguate between constants and computations – the language allows any (well-typed)
expression in the same position, for example

let val x = 4 in 〈person age = “3”〉(x + 5)〈/person〉

8

which shows also an implicit coercion from int to XML, just as the earlier example coerced
a string to XML.1

Computations in attribute position are also possible, for example

〈person name = “Berners”ˆ“-”ˆ“Lee”/〉

as are computations in tag position, for example

let x = “person” in 〈{x} age = “7”/〉

though for the latter we use extra syntax (the braces { and }) in the computation case
rather than the constant case, as we expect the majority of XML expressions will have
constant tags. We do not permit computation of attribute names, as this would make it
hard to statically ensure well-formedness (to prevent repeated names) and as we believe
the need will be rare.

Making this precise, the core language has a single XML expression form

〈te aes//〉e

in which te is a tag expression, aes is a sequence of attribute expressions, and e is an
expression whose value is to be marked up. There are straightforward derived forms,
which are translated out before typechecking as below, to provide the usual outfix and
non-fix syntax.

〈tag aes〉e〈/tag〉 7→ 〈tag aes//〉e (derived)
〈te aes/〉 7→ 〈te aes//〉[] (derived)

We introduce two types, MU, of XML elements, and content, broadly of values that can
be marked-up. For convenience we allow a number of types to be candidates for marking
up, defining a subtyping relation with the axioms

bool <: content int <: content char <: content string <: content MU <: content

together with the usual rules for functions, tuples, lists, reflexivity and transitivity. To
type a markup expression the tag and attribute expressions must be ok (the rules for
which are in the Appendix) and the body e must be a content list.

E ` te ok
E ` aes ok
E ` e : content list

E ` 〈te aes//〉e : MU

1An alternative would be to allow strings to appear without quotes, and require all program identifiers
to be prefixed, e.g. with a dollar sign. We felt that this would be too burdensome for the programmer.

9

The XML element

<A>Hello World <F>Hello</F> <F>Universe</F>

is thus represented in core Iota as

〈A//〉 [〈B//〉“Hello”, 〈B//〉“World”, 〈F//〉“Hello”, 〈F//〉“Universe”]

where the body of the A tag is a bracket-and-comma delimited list of content.

To eliminate the clutter of these delimiters, and (more importantly) to allow the program-
mer to write expressions that look like XML elements, we allow certain space-separated
sequences of expressions inside a pair of tags:

〈tag aes〉e1 .. en〈/tag〉

allowing the above to be written as

〈A〉 〈B〉“Hello”〈/B〉 〈B〉“World”〈/B〉 〈F〉“Hello”〈/F〉 〈F〉“Universe”〈/F〉 〈/A〉

Indeed, the first simple examples above already made use of this form to omit brackets. Its
meaning is not straightforward, however. Consider the Iota code fragment 〈A〉e e ′〈/A〉.
The question is how to interpret e e ′? It is ambiguous as it stands: it could be a function
application (with e : T → content and e ′ : T), in which case the fragment should be re-
garded as 〈A〉[(e e ′)]〈/A〉, or a juxtaposition of XML elements, in which case the fragment
should be regarded as 〈A〉[e, e ′]〈/A〉. There is even a third possibility, if e : T → content list
and e ′ : T , in which case the fragment should be regarded as simply 〈A〉(e e ′)〈/A〉. Thus
type-based disambiguation is required to make sense of such expressions. In this paper we
do not specify exactly how this is done – the implementation uses an algorithm that seems
to work well in practice; a formal description of its properties remains for future work.
Note that in longer sequences one must deal also with the fact that cons and function
application associate on opposite sides.

We should emphasise that the use of type-based disambiguation is an experimental design
choice. Our aim was to allow the XML values within Iota code to be as close as possible
to the actual concrete syntax of XML. In practice, type-based disambiguation does not
seem to cause much confusion for programmers, but clearly much more experience is
needed. It remains to be seen whether programmers can always easily disambiguate their
code, or whether we need to change the Iota syntax to force disambiguation. (The latter
design choice has been taken by the designers of XQuery, who use two different braces to
distinguish between XML values and expressions.)

Note. There does appear to be a genuine interaction between XML parsing and strong
typing. In the latest version of XQuery (August 2002), it is stated that the XML frag-
ment <sizes>1 2 3</sizes> is parsed as <sizes>"1 2 3"</sizes> (using Iota syntax).

10

However during type-checking (called “Schema validation”) it could be re-parsed as, for
example, <sizes>[1,2,3]</sizes> (again using Iota syntax). Thus matching a value
against a type can change its syntactic structure.

Iota supports the definition of functions by pattern-matching, much as in ML. The forms
of core patterns are shown in Figure 2; they roughly match the expression forms, so for
XML we have

〈tp aps//〉p

where tp is a tag pattern and aps is a sequence of attribute patterns. The latter may
end in a wildcard, allowing unknown attributes to be discarded. Attribute matching is
unordered. To this are added derived forms

〈tag aps〉p〈/tag〉 7→ 〈tag aps//〉p (derived)
〈tp aps/〉 7→ 〈tp aps//〉[] (derived)

and a form that requires type-based disambiguation:

〈tp aps〉p1 p2 ... pn〈/tp〉

The notion of subtyping in Iota means that we can emulate a limited form of typecase
(in the sense of Abadi et al. [ACPP91]): a form of choice operator where the choice is
determined by the type of the argument, rather than its value. For example, consider the
following code.

fn x : string⇒ x
| x : char⇒ x
| x : int⇒ x + 1
| x : content⇒ x

This function (of type content→ content) acts like the identity function on character and
string values, but the increment function for integers.

4 Design: Concurrency

For concurrency and communication we take primitive asynchronous message-passing and
parallel composition, based on the π-calculus [MPW92]. Experience with the Pict [PT00]
and Nomadic Pict [SWP99] programming languages shows that this is a lightweight but
expressive choice in which many idioms can be coded up, including multi-cast messages,
RPCs, locks, and simple objects.

We take a type proc of process expressions and allow parallel composition e||e ′ of expres-
sions of type proc. The empty process is written 0. Channel names can be created using

11

the new expression. They have types T chan, for channels carrying values of type T . The
output process (written e!e ′) takes two arguments: the first e specifying the channel to
use (often this will just be a channel name rather than some more complex expression);
the second e ′ gives the value to be sent. Note that there is no continuation after an output
– the model is of asynchronous communication. The input process (written as e?e ′) again
takes two arguments, the first specifying a channel name and the second being a function
which is applied to the received value. For example, consider the following Iota code.

new x : string chan in (x !“hi”)||(x?fn y : string⇒ Iota.err!(yˆ“ there”))

This creates a new channel, x , down which the left process sends the string “hi”. This
string is then read by the other process and is concatenated with another string “ there”,
and thence sent to the built-in channel Iota.err. This channel echoes its input to the
screen (in this case the string “hi there”). We also provide a repeated input operation
(written as infix e?∗ e ′). To remove the annoying occurences of the keyword fn in the
input operations, we extend the core language with the derived form e?∗ match for the
slightly more verbose e?fn match.

There are many language-design choices in how functional and concurrent computation can
be integrated, both in type system and operational semantics. Several have been explored
in the literature (e.g. in CML, Facile, and JoCaml, among others). We will not discuss the
whole design space here, but note only that in Iota the functional and process parts are
layered by the type system; functional reduction cannot spawn new processes. This is an
experimental choice – to encourage the writing of robust code we want a clearly-identifiable
fragment of the language which is guaranteed not to have communication side-effects (and
so no problems with deadlock, etc). It also makes for a simpler semantics. Only experience
can show if the consequent loss of expressiveness is tolerable. Communication of higher-
order values (including parameterised processes) is included.

Raised exceptions propagate up through functional computation but not between processes
– again, a simple choice, the usefulness of which must be experimentally determined.

5 Application: Coding Events

In π-style communication an output will be received by a single input, whereas in HAN
programming it seems that a common idiom will be to broadcast events (some of which
are defined by UPnP device descriptions) to many receivers. Iota does not have primitive
support for such events since, as we shall demonstrate here, they can easily be coded up.

One might want event expressions

e ::= ...
!!e.e ′ broadcast event e, with continuation e ′

??e.e ′ install an event-listener then (after the install has happened) do e ′

12

with typing rules

E ` e : MU
E ` e ′ : proc

E `!!e.e ′ : proc

E ` e : MU→ proc
E ` e ′ : proc

E `??e.e ′ : proc

that allow XML values to be broadcast (!!e.e ′) and event-listeners, which are just func-
tions from MU to proc, to be registered. Both have continuations – these are synchronous
publish and subscribe. For simplicity we take just a single global ‘event channel’.

To encode these in Iota, we start by taking two channels:

publish : (MU ∗ () chan) chan
listen : ((MU→ proc) ∗ () chan) chan

The broadcast and install are encoded as follows:

[[!!e.e ′]] = new z : () chan in

(publish!(e, z)||z?()⇒ e ′)
[[??e.e ′]] = new z : () chan in

(listen!(e, z)||z?()⇒ e ′)

And an EventManager process must be run at top level:

EventManager =
new listeners : (MU→ proc) list chan in

(listeners![]
||listen?∗ (l , z)⇒ listeners?ls ⇒ (listeners!(l :: ls)||z !())
||publish?∗ (m, z)⇒ listeners?ls ⇒
let val F = fn l : MU→ proc⇒ try l m with MatchFailed()⇒ 0 in

let val Par = fn x : proc⇒ fn y : proc⇒ x ||y in

(foldr Par 0 (map F ls)
||listeners!ls
||z !())

This process maintains state – the list of listener processes – in a private channel listeners.
When the manager receives a listen request, the listener process is simply concatenated
to the channel. When the manager receives a publish request, it supplies the markup to
all the processes waiting on the listeners channel. (Note the exception handling code,
which implicitly assumes the body of an event-listener function will not raise MatchFailed
– one might want to be more refined.) This process uses the familiar functions map and
foldr, which are provided in a standard library.

As part of an overall HAN system architecture, conventions on what is evented and what is
dealt with by method calls have to be fixed. UPnP events (sic) most device state changes.

13

6 Application: HAN architecture and controlling a HAN
device

Although the details are still evolving, we expect a typical HAN to contain a home server.
We anticipate that most Iota code will run on the home server, maintaining any required
state (e.g. its view of the various home device states) using the standard π idiom of
outputs on channels – much in the same way as the EventManager process in the previous
section. The home server will then communicate to the HAN devices – following the UPnP
specifications – using SOAP.

The rest of this section illustrates the code required to control a HAN device – a CD player
– that follows the UPnP idiom. The code sends a control message to the CD, querying its
volume, then sends another control message to set it to the previous value plus one.

The messages are sent as SOAP invocations, which in turn are embedded in HTTP. SOAP
headers are of the form:

POST path of control URL HTTP/1.1

HOST: host of control URL:port of control URL

CONTENT-LENGTH: bytes in body

CONTENT-TYPE: text/xml; charset="utf-8"

SOAPACTION:

"urn:schemas-upnp-org:service:Audio:1#GetAudio"

In this section we suppose the path, host and port of the device are contained in a new
type DeviceAddress, and wrap up the

urn:schemas-upnp-org:service:Audio:1#GetAudio

as a value of type SoapAction. We regard the payload of the SOAP request simply as a
value of type MU, ignoring any correlation between the SoapAction and the structure of
the payload. We suppose a library channel

invokeSoap : (DeviceAddress ∗ SoapAction ∗MU ∗ (MU chan)) chan

that sends off SOAP messages in the obvious way (this has not been implemented).

The code can then be written as below. It is regrettably verbose, even with extensive
use of our syntactic sugar. However one might reasonably expect there to be UPnP
specific libraries, rather than merely SOAP-specific, which would dramatically reduce the
size of the code. We revert to non-typeset code and use additional syntactic sugar for
let val p = e in e ′.

new result : MU chan in (* make up a new result channel *)

14

(invokeSoap! (* send off the query command, with a 4-tuple of args *)

(deviceAddress,

"urn:schemas-upnp-org:service:Audio:1#GetAudio",

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"//>

<s:Body//>

<u:GetAudio xmlns:u="urn:schemas-upnp-org:service:Audio:1"/>,

result) (* this bit of the args is the channel on

which we expect the result *)

|result?x=> (* get result *)

let val (* pattern match the result value x *)

<s:Envelope

xmlns:s="http://schemas.xmlsoap.org/soap/envelope/",

s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"//>

<s:Body//>

<u:GetAudioResponse xmlns:u="urn:schemas-upnp-org:service:Audio:1"//>

(<CurrentVolume>z:int</CurrentVolume> :: *:MU list)

=x in

(invokeSoap! (* send off the set-volume command *)

(deviceAddress,

"urn:schemas-upnp-org:service:Audio:1#SetVolume",

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/",

s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"//>

<s:Body//>

<u:SetVolume xmlns:u="urn:schemas-upnp-org:service:Audio:1"//>

<NewVolume> z+1 </NewVolume>, (* real computation! *)

result)

|result?x=> 0) (* receive ack, then we’re done *)

7 Application: Networking primitives

The Iota implementation has libraries for sockets programming and for HTTP (the latter
written in Iota itself). This makes it very straightforward to, for example, download a
piece of XML from the web and extract information from it. Suppose that this XML, with
(abridged!) descriptions of 4 HAN devices, is placed on a webserver.

<devices>

<device id="WM01"> <device id ="TSTR007">

<nature desc="washing machine"/> <nature desc="toaster"/>

<location value="Kitchen" /> <manufacturer value="Siemens Porsche" />

<manufacturer value = "Bosch"/> </device>

</device> <device id ="TV03">

<device id ="HIFI002"> <nature desc="television"/>

<nature desc="hifi"/> <quiet value="3"/>

<location value="LivingRoom"/> <digital provider="NTL"/>

<quiet value="2" /> </device>

15

</device> </devices>

The Iota code to access it, and return the identifiers of the devices that have a quiet
volume (together with the associated values) is below.

let fun has_quiet <quiet value=x /> :: ps => (true,x)

| p : content :: ps => has_quiet ps

| [] => (false,"")

in let

fun search (<device id=x //>info):: ps => let val (yes,vol) = has_quiet(info)

in if yes

then

(x,vol):: search ps

else search ps

| [] => []

in let

fun findquietparams (<devices>entries</devices>) => search entries

| *:MU => raise UserException()

in new d : content list chan

in

Iota.IO.XMLHTTP ("www.cl.cam.ac.uk", 80,

"/users/gmb/iota-devices.xml", [], d)

||

d ? fn result => Iota.err ! print(findquietparams result)

Similar code has been successfully executed in practice.

This code is extremely simple, which is essentially the point. In the HAN setting, and
in other Internet applications, much of the code simply downloads XML and extracts
information from it. Pattern matching and simple recursion make this particularly well-
suited to functional programming.

8 Conclusion

In this paper we have given an overview of our design of Iota: a concurrent XML scripting
language. The novel features of Iota are its approach to integrating XML elements,
and its use of channel-based, asynchronous communication primitives to program device
behaviour within a home area network. Not least, we have taken a mathematical approach
to our language design, providing precise details of the type system and an operational
semantics.

It raises several interesting questions. Most obviously, there is the pragmatic question: is
the language expressive enough for its intended application, scripting home-area networks?
Only experience can tell.

16

A more general pragmatic question is the extent to which XML found ‘in the wild’ will
conform to DTDs or some form of Schemas, and, if they do, whether within a single domain
such as home networking whether particular definitions will become sufficiently widespread
to count on. If the answers to these become positive then a richer type system than the
one we have presented here, that can express those definitions, will become desirable. On
the other hand, if the unstructured status quo continues then there will be a real need for
loosely-typed systems such as the one we have presented (or perhaps for optional weakening
of the stronger systems). Its simplicity may also be a major advantage, particularly when
one thinks of integrating it with the rest of a modern programming language type system.

There is a particular technical question of how to precisely describe the type-based disam-
biguation that has been implemented. Further, while we have defined the language and
operational semantics carefully, we have not attempted to prove type preservation and
safety theorems.

An interesting experiment, taking advantage of the small size of the language, would be
to reimplement the Iota engine targeting a small virtual machine, such as the KVM.

Acknowledgements

The current implementation2 of Iota was written, in Java, by Ewan Mellor as part of his
undergraduate project. We are grateful to him for his careful coding, and his assistance
in the design of Iota. We acknowledge support from a Royal Society University Re-
search Fellowship (Sewell), EPSRC research grant GR/N24872 Wide-area Programming:
Language, Semantics and Infrastructure Design, and EU grant PEPITO.

2Available at http://www.cl.cam.ac.uk/users/gmb/Iota

17

A Iota Definition

A.1 Syntax

We have three classes of syntax: core syntax, derived forms that can be translated out
before typechecking (flagged ‘derived’), and forms that require type-based disambiguation
(flagged ‘magic’).

We work up to alpha-equivalence throughout, requiring all identifiers in patterns to be
distinct and regarding them as binding in the evident scopes.

Types T ::= bool Booleans
int Integers
char Characters
string Strings
unit Unit
T1 ∗ .. ∗ Tn Tuples n ≥ 2
T list Lists
T → T Function space
exn Exceptions
MU Mark-up
content Content (to be marked up)
T chan Channel carrying T
proc Processes

Constants and Other Terminals

i Integer constant
b Boolean constant
c Character constant
s String constant in quotes, eg “ab”
x Identifier
ex Exception constructor
tag Tag
a Attribute name

We do not define the concrete syntax tokens for the above here. Characters and strings
are Unicode compliant. We assume here that tags and attribute names are taken from a
set that is identical to the values of type string. Strictly, this is not so, and we need either
a defined injection from strings to tag/attribute names or to raise exceptions dynamically.

We suppose each exception constructor ex has a predetermined type T (ex) of the values it
carries. We require there to be a MatchFailed constructor, with T (MatchFailed) = unit.

18

We omit a specification of standard library functions, eg + : int→ int→ int and channels
for interaction. We would expect there to be library support for timeouts.

Expressions e ::= x Identifier
i, b, c, s Integer, Boolean, Character, String constant
() Unit
(e1, .., en) Tuple n ≥ 2
[] Empty List
e :: e Cons
if e then e else e Conditional
fn match Function
fr x match Recursive Function
e e Application
let dec in e Local declaration
exe Exception
raise e Raise exception
try e with match Handle exception(s)
〈te aes//〉e Markup
0 Empty process
e||e Parallel composition
new x : T in e New channel declaration
e!e Output along a channel
e?e Input from a channel
e?∗ e Replicated input

and derived forms with their translations:

(e) 7→ e (derived)
[e1, .., en] 7→ e1 :: ..en :: [] (derived) (n ≥ 1)
〈tag aes〉e〈/tag〉 7→ 〈tag aes//〉e (derived)
〈te aes/〉 7→ 〈te aes//〉[] (derived)
e?match 7→ e?fn match (derived)
e?∗match 7→ e?∗ fn match (derived)

The ambiguous surface syntax form for markup allows a space-separated sequence of ex-
pressions inside a pair of tags:

e ::= ...
〈tag aes〉e1 .. en〈/tag〉 Markup n ≥ 0 (magic)

These ei might be of type content, content list, T → content or indeed any T , depending
on their context.

Note there is not a derived form 〈te aes〉e〈/te〉 for an arbitrary te, just for a tag . Moreover,

19

the tags must match for desugaring to occur. Similarly for patterns below.

Matches match ::= p ⇒ e
p ⇒ e | match

Tag expressions te ::= tag Constant Tag
{e} Computed Tag

Attribute expression sequences aes ::= empty Empty sequence
a = e aes

We allow computation of tag names and attribute values, but not of attribute names. This
is because (1) it is difficult to statically ensure XML well-formedness with attribute name
computation, as there may be repeated attributes; and (2) pragmatically, we expect such
computation will not usually be required.

Patterns p ::= ∗ : T Wildcard
x : T Variable
i, b, c, s Integer, Boolean, Character, String constant
() Unit
(p1, .., pn) Tuple n ≥ 2
[] Empty List
p :: p Cons
ex p Exception constructor pattern
〈tp aps//〉p Markup pattern

and derived forms with their translations:

(p) 7→ p (derived)
[p1, .., pn] 7→ p1 :: .. :: pn :: [] (derived) n ≥ 1
〈tag aps〉p〈/tag〉 7→ 〈tag aps//〉p (derived)
〈tp aps/〉 7→ 〈tp aps//〉[] (derived)

Again we have ambiguous surface syntax for patterns:

p ::= ...
〈tp aps〉p1 p2 ... pn〈/tp〉 (magic)

Tag Patterns tp ::= ∗ Wildcard tag pattern
tag Constant tag pattern
{x} Identifier

Attribute Patterns ap ::= ∗ Wildcard
s String
x Identifier

Attribute Pattern Sequences aps ::= empty Empty sequence
∗ Wildcard sequence
a = ap aps

20

One can envisage richer forms for attributes, eg to pull out a subsequence of attribute
definitions, but again that would be hard to statically type. We do not have value equality
patterns = v but only the various constant forms. This would be a fairly minor addition
if required.

Declarations dec ::= val x = e Value

with derived form and translation

fun x match 7→ val x = fr x match (derived)

We omit syntax for mutually-recursive functions, though that should be provided.

A.2 Typing

Typing and operational semantics are here defined only for the core language.

Type environments E are finite partial functions from identifiers to types. We write E ,E ′

for their union, thereby asserting also that E and E ′ have disjoint domain.

Judgements

E ` e : T under assumptions E , expression e has type T
E ` match : T → T ′ under assumptions E , match match has type T → T ′

E ` te ok under assumptions E , tag expression te is well-formed
E ` aes ok under E , attribute expression sequence aes is well-formed
` p : T B E ′ pattern p matches type T , giving additional bindings E ′

` tp B E tag pattern tp gives bindings E
` ap B E attribute pattern ap gives bindings E
` aps B E attribute pattern sequence aps gives bindings E
E ` dec B E ′ under E , declaration dec gives additional bindings E ′

T <: T ′ type T is a subtype of type T ′

21

E ` e : T

Data, Functions, Exceptions

E ` e : T
T <: T ′

E ` e : T ′

E , x : T ` x : T E ` i : int
E ` b : bool
E ` c : char
E ` s : string
E ` () : unit

E ` e1 : bool
E ` e2 : T
E ` e3 : T

E ` if e1 then e2 else e3 : T

E ` ei :Ti i = 1..n n ≥ 2

E ` (e1, .., en) : T1 ∗ .. ∗ Tn

E ` [] : T list

E ` e1 : T
E ` e2 : T list

E ` e1 :: e2 : T list

E ` match : T → T ′

E ` fn match : T → T ′
E , x : T → T ′ ` match : T → T ′

E ` fr x match : T → T ′

E ` e1 : T → T ′

E ` e2 : T

E ` e1e2 : T ′

E ` dec B E ′

E ,E ′ ` e : T

E ` let dec in e : T

E ` e : T (ex)

E ` ex e : exn

E ` e : exn

E ` raise e : T

E ` e : T
E ` match : exn→ T
T 6= proc

E ` try e with match : T

XML

E ` te ok
E ` aes ok
E ` e : content list

E ` 〈te aes//〉e : MU

22

Processes

E ` 0 : proc

E ` e : proc
E ` e ′ : proc

E ` e||e ′ : proc

E , x : T chan ` e : proc

E ` new x : T chan in e : proc

E ` e1 : T chan
E ` e2 : T

E ` e1!e2 : proc

E ` e1 : T chan
E ` e2 : T → proc

E ` e1?e2 : proc
E ` e1?∗ e2 : proc

Note that typing does not enforce exhaustiveness of matches.

We allow general recursion here, but it may be that primitive recursion would suffice for
HAN, expressed with some combinators.

Note we do not allow try e1 with match for e1 : proc, as that would require propagating
exceptions across threads.

The process part is strictly layered above the functional part – note that new x : T in e is
allowed only for e : proc, and input bodies must be of type T → proc.

23

E ` match : T → T ′

` p : T B E ′

E ,E ′ ` e : T ′

E ` p ⇒ e : T → T ′

` p : T B E ′

E ,E ′ ` e : T ′

E ` match : T → T ′

E ` p ⇒ e | match : T → T ′

E ` te ok

E ` tag ok

E ` e : string

E ` {e} ok

E ` aes ok

E ` empty ok

E ` e : string
E ` aes ok
a /∈ aes

E ` a = e aes ok

` p : T B E ′

` p : T ′ B E
T <: T ′

` p : T B E

` (∗ : T) : T B {}
` (x : T) : T B x : T

` b : bool B {}
` i : int B {}
` c : char B {}
` s : string B {}
` () : unit B {}

` pi :Ti B Ei i = 1..n n ≥ 2

` (p1, .., pn) : T1 ∗ .. ∗ Tn B E1, .., En

` [] : T list B {}

` p1 : T B E1

` p2 : T list B E2

` p1 :: p2 : T list B E1,E2

` p : T (ex) B E ′

` exp : exn B E ′

` tp B E1

` aps B E2

` p : content list B E3

` 〈tpaps//〉p : MU B E1,E2,E3

24

` tp B E

` ∗ B {} ` tag B {} ` {x} B x : string

` ap B E

` ∗ B {} ` s B {} ` x B x : string

` aps B E

` empty B {} ` ∗ B {}

` ap B E1

` aps B E2

a /∈ aps

` a = apaps B E1,E2

E ` dec B E ′

E ` e : T

E ` val x = e B x : T

T <: T ′

bool <: content
int <: content
char <: content
string <: content
MU <: content

T <: T

T <: T ′

T ′ <: T ′′

T <: T ′′

Ti <: T ′i i = 1..n n ≥ 2

T1 ∗ .. ∗ Tn <: T ′1 ∗ .. ∗ T ′n
T <: T ′

T list <: T ′ list

T ′1 <: T1

T2 <: T ′2
T1 → T2 <: T ′1 → T ′2

Note the subsumption in the pattern relation.

As usual, T chan is non-variant.

25

A.3 Operational Semantics

This section defines the reduction semantics only. To specify library channel I/O labelled
transitions would be required also.

The operational semantics will only be used for expressions that are typable with respect
to a type environment consisting only of channel identifiers. We say a type T is extensible
if ∃T ′.T = T ′ chan, and similarly that a type environment E is extensible if all types in
ran(E) are extensible. We also assume an extensible Elib (with library channels this would
grow).

The semantics defines the following sets and relations:

• Values v

• Sequential reduction contexts C

• Concurrent reduction contexts D

• Functional reduction e1
fun−→ e2

• Structural congruence e1 ≡ e2

• Process reduction e1
proc−→ e2

• Combined reduction e1 −→ e2

26

Values

avs ::= empty
a = s avs if a /∈ attributes(avs)

v ::= x
i
b
c
s
()
(v1, .., vn) n ≥ 2
[]
v :: v
fn match
fr x match
ex v
〈tag avs//〉v
0
v ||v
new x : T in v
v !v
v?v
v?∗ v

Note that raise v is not a value.

27

Matching

We define a partial function match(, ,) taking a type environment, a value, and a
pattern (in which all variables are distinct) and giving a substitution.

Note that matching involves typing, because of the subtyping with content and MU, and
that there may be many types T such that E ` v : T .

match(E , v , ∗ : T) = {} if E ` v : T
match(E , v , x : T) = {v/x} if E ` v : T
match(E , i, i) = {}
match(E , b, b) = {}
match(E , c, c) = {}
match(E , s, s) = {}
match(E , (), ()) = {}
match(E , (v1, .., vn), (p1, .., pn)) = match(E , v1, p1) ∪ ... ∪match(E , vn, pn) n ≥ 2
match(E , [], []) = {}
match(E , v1 :: v2, p1 :: p2) = match(E , v1, p1) ∪match(E , v2, p2)
match(E , ex v , exp) = match(E , v , p)
match(E , 〈tag avs//〉v , 〈tp aps//〉p) = tmatch(E , tag , tp) ∪ asmatch(E , avs, aps)

∪match(E , v , p)
match(E , v , p) undefined otherwise

This definition uses the following auxiliary functions for tag, attribute sequence and at-
tribute matching:

tmatch(tag , ∗) = {}
tmatch(tag , tag) = {}
tmatch{tag , {x}) = {tag/x}
tmatch(tag , tag ′) undefined if tag ′ 6= tag

asmatch(empty, empty) = {}
asmatch((a = s avs), empty) undefined
asmatch(avs, ∗) = {}
asmatch(avs, (a = ap aps)) = amatch(avs a = ap) ∪ asmatch(avs, aps)

amatch(empty, a = ap) undefined
amatch((a = s avs), a = ap) = amatch′(s, ap)
amatch((a ′ = s avs), a = ap) = amatch(avs, a = ap) if a ′ 6= a

amatch′(s, ∗) = {}
amatch′(s, s) = {}
amatch′(s′, s) undefined if s′ 6= s
amatch′(s, x) = {s/x}

28

Fun-reduction e1
fun−→ e2

Sequential reduction contexts:

C ::= if then e1 else e2

(v1, .., , .., en)n ≥ 2
:: e

v ::
e

v
let val x = in e
raise

try with match
〈 aes//〉e
〈taga1 = s1..am = ..an = en//〉e
〈tagavs//〉
!e

v !
?e

v?
?∗ e

v?∗
||e

e||
new x : T in

(we use atomic reduction contexts, as the exception propagation rule involves a context
equality test).

Axioms:

if true then e1 else e2
fun−→ e1

if false then e1 else e2
fun−→ e2

(fn p1 ⇒ e1 | ... | pn ⇒ en)v
fun−→ match(v , pi)ei (1)

(fr x p1 ⇒ e1 | ... | pn ⇒ en)v
fun−→ (1)

{(fr xp1 ⇒ e1 | ... | pn ⇒ en)/x}match(Elib, v , pi)ei

(fn p1 ⇒ e1 | ... | pn ⇒ en)v
fun−→ raise MatchFailed() (2)

(fr x p1 ⇒ e1 | ... | pn ⇒ en)v
fun−→ raise MatchFailed() (2)

let val x = v in e
fun−→ {v/x}e

C [raise v]
fun−→ raise v (3)

try raise v with p1 ⇒ e1 | .. | pn ⇒ en
fun−→ match(Elib, v , pi)ei

try v with p1 ⇒ e1 | .. | pn ⇒ en
fun−→ v

29

(1) where i ∈ 1..n is the least such that match(Elib, v , pi) is defined.

(2) where there is no i ∈ 1..n such that match(Elib, v , pi) is defined.

(3) if there does not exist (p1 ⇒ e1 | .. | pn ⇒ en) and i such that C = try with p1 ⇒
e1 | .. | pn ⇒ en and match(Elib, v , pi) defined

Note that these rules allow fun-reduction inside expressions of type proc, eg x !((fn i : int⇒
z !i)7)

fun−→ x !(z !7), and even x !(e | (fn i : int⇒ z !i)7)
fun−→ x !(e | z !7). They do not specify

an evaluation order between parallel components (to not over-constrain the implementa-
tion). We do specify an evaluation order elsewhere, though. Fun-reduction has no side
effects except exceptions, due to the function/process separation enforced by typing (and
hence the rules above do not need to deal with scope extrusion).

Structural congruence e1 ≡ e2

Define a structural equivalence ≡ over core expressions to be the least relation generated
by the axioms:

0||e1 ≡ e1

e1||e2 ≡ e2||e1

e1||(e2||e3) ≡ (e1||e2)||e3

e1||new x : T in e2 ≡ new x : T in e1||e2 if x not free in e1

with standard rules for equivalence and for congruence with respect to parallel composition
and the new operator. Note it is important not to have congruence rules for tuples, I/O
operators, or any other constructs.

Proc-reduction e1
proc−→ e2

Concurrent reduction contexts:

D ::=
||e
new x : T in D

Axioms:

x !v1||x?v2
proc−→ v2v1

x !v1||x?∗ v2
proc−→ (v2v1)||x?∗ v2

Reduction e −→ e ′

The complete reduction relation is defined by

e
fun−→ e ′

C [e] −→ C [e ′]
e1 ≡ D[e ′1] e ′1

proc−→ e ′2 D[e ′2] ≡ e2

e1 −→ e2

30

combining fun reduction and proc reduction, and closing the latter under structural con-
gruence.

Note that the proc rules require the channel and argument parts to both be reduced to
values before communication can occur. (In fact, it is uncommon to write e.g. e!e ′ for
non-value e).

Note that typing rules out examples like x !(new y : int chan in y) where one would have to
decide whether to scope-extrude the new before or after the output.

Note that non-handled exceptions in processes here simply become stuck, eg

x !(raise ex ())||x?f

The simplest choice here is to report the error on stderr, discard the output or input, and
continue executing, for any process structurally congruence to one of the following:

D[raise v !e] D[raise v?e] D[raise v?∗ e]
D[v !raise v ′] D[v?raise v ′] D[v?∗ raise v ′]

A more satisfactory solution would involve process groups. We do not specify the runtime
errors here, but they are straightforward.

31

References

[ACPP91] M. Abadi, L. Cardelli, B.C. Pierce, and G.D. Plotkin. Dynamic typing in a
statically typed language. ACM Transactions on programming languages and
systems, 13(2):237–268, 1991.

[BH01] A.F. Blackwell and R. Hague. AutoHAN: An architecture for programming
the home. In Proceedings of the IEEE Symposia on Human-Centric Computing
Languages and Environments, pages 150–157, 2001.

[HP00] H. Hosoya and B.C. Pierce. XDuce: A typed XML processing language (prelim-
inary report). In International Workshop on the Web and Databases, volume
1997 of Lecture Notes in Computer Science, 2000.

[LC00] D. Lee and W.W. Chu. Comparative analysis of six XML schema languages.
SIGMOD Record, 29(3):76–87, 2000.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I
+ II. Information and Computation, 100(1):1–77, 1992.

[PT00] B.C. Pierce and D.N. Turner. Pict: A programming language based on the
pi-calculus. In Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 2000.

[SGG01] U. Saif, D. Gordon, and D. Greaves. Internet access to a home area network.
IEEE Internet Computing, 2001.

[SM00] M. Shields and E. Meijer. XMλ: A functional programming language for
constructing and manipulating XML documents. Unpublished paper, 2000.

[SWP99] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Location-
independent communication for mobile agents: a two-level architecture. In
Internet Programming Languages, LNCS 1686, pages 1–31, October 1999.

[upn00] Understanding Universal Plug and Play (white paper). Available at
http://www.upnp.org, 2000.

[WR99] M. Wallace and C. Runciman. Haskell and XML: Generic combinations or type-
based translation? In International conference on functional programming,
1999.

32

