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Cryptography
ZHQM ZMGM ZMFM

— G Julius Caesar

KXJEY UREBE ZWEHE WRYTU HEYFS KREHE GOYFI WTTTU OLKSY CAJPO BOTEI
ZONTX BYBWT GONEY CUZWR GDSON SXBOU YWRHE BAAHY USEDQ

— John F Kennedy

5.1 Introduction

Cryptography is where security engineering meets mathematics. It provides
us with the tools that underlie most modern security protocols. It is probably
the key enabling technology for protecting distributed systems, yet it is
surprisingly hard to do right. As we’ve already seen in Chapter 3, ‘Protocols’,
cryptography has often been used to protect the wrong things, or used to
protect them in the wrong way. We’ll see plenty more examples when we start
looking in detail at real applications.

Unfortunately, the computer security and cryptology communities have
drifted apart over the last 25 years. Security people don’t always understand
the available crypto tools, and crypto people don’t always understand the
real-world problems. There are a number of reasons for this, such as different
professional backgrounds (computer science versus mathematics) and differ-
ent research funding (governments have tried to promote computer security
research while suppressing cryptography). It reminds me of a story told by
a medical friend. While she was young, she worked for a few years in a
country where, for economic reasons, they’d shortened their medical degrees
and concentrated on producing specialists as quickly as possible. One day,
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a patient who’d had both kidneys removed and was awaiting a transplant
needed her dialysis shunt redone. The surgeon sent the patient back from the
theater on the grounds that there was no urinalysis on file. It just didn’t occur
to him that a patient with no kidneys couldn’t produce any urine.

Just as a doctor needs to understand physiology as well as surgery, so
a security engineer needs to be familiar with cryptology as well as computer
security (and much else). This chapter is aimed at people without any training
in cryptology; cryptologists will find little in it that they don’t already know.
As I only have a few dozen pages, and a proper exposition of modern cryp-
tography would run into thousands, I won’t go into much of the mathematics
(there are lots of books that do that; see the end of the chapter for further
reading). I’ll just explain the basic intuitions and constructions that seem
to cause the most confusion. If you have to use cryptography in anything
resembling a novel way, then I strongly recommend that you read a lot more
about it — and talk to some real experts. The security engineer Paul Kocher
remarked, at a keynote speech at Crypto 2007, that you could expect to break
any crypto product designed by ‘any company that doesn’t employ someone
in this room’. There is a fair bit of truth in that.

Computer security people often ask for non-mathematical definitions of
cryptographic terms. The basic terminology is that cryptography refers to
the science and art of designing ciphers; cryptanalysis to the science and
art of breaking them; while cryptology, often shortened to just crypto, is
the study of both. The input to an encryption process is commonly called the
plaintext, and the output the ciphertext. Thereafter, things get somewhat more
complicated. There are a number of cryptographic primitives — basic building
blocks, such as block ciphers, stream ciphers, and hash functions. Block ciphers
may either have one key for both encryption and decryption, in which case
they’re called shared-key (also secret-key or symmetric), or have separate keys
for encryption and decryption, in which case they’re called public-key or
asymmetric. A digital signature scheme is a special type of asymmetric crypto
primitive.

In the rest of this chapter, I will first give some simple historical examples to
illustrate the basic concepts. I’ll then try to fine-tune definitions by introducing
the random oracle model, which many cryptologists use. Finally, I’ll show how
some of the more important cryptographic algorithms actually work, and
how they can be used to protect data.

5.2 Historical Background

Suetonius tells us that Julius Caesar enciphered his dispatches by writing
‘D’ for ‘A’, ‘E’ for ‘B’ and so on [1232]. When Augustus Caesar ascended the
throne, he changed the imperial cipher system so that ‘C’ was now written for
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‘A’, ‘D’ for ‘B’ etcetera. In modern terminology, we would say that he changed
the key from ‘D’ to ‘C’. Remarkably, a similar code was used by Bernardo
Provenzano, allegedly the capo di tutti capi of the Sicilian mafia, who wrote ‘4’
for ‘a, ‘5’ for ‘b’ and so on. This led directly to his capture by the Italian police
in 2006 after they intercepted and deciphered some of his messages [1034].

The Arabs generalised this idea to the monoalphabetic substitution, in which
a keyword is used to permute the cipher alphabet. We will write the plaintext
in lower case letters, and the ciphertext in upper case, as shown in Figure 5.1:

abcdefghijklmnopqrstuvwxyz

SECURITYABDFGHJKLMNOPQVWXZ

Figure 5.1: Monoalphabetic substitution cipher

OYAN RWSGKFR AN AH RHTFANY MSOYRM OYSH SMSEAC NCMAKO; but breaking
ciphers of this kind is a straightforward pencil and paper puzzle, which you
may have done in primary school. The trick is that some letters, and combi-
nations of letters, are much more common than others; in English the most
common letters are e,t,a,i,o,n,s,h,r,d,l,u in that order. Artificial intelligence
researchers have shown some interest in writing programs to solve monoal-
phabetic substitutions. Using letter and digram (letter pair) frequencies alone,
they typically succeed with about 600 letters of ciphertext, while smarter
strategies such as guessing probable words can cut this to about 150 letters. A
human cryptanalyst will usually require much less.

There are basically two ways to make a stronger cipher — the stream cipher
and the block cipher. In the former, you make the encryption rule depend on
a plaintext symbol’s position in the stream of plaintext symbols, while in the
latter you encrypt several plaintext symbols at once in a block. Let’s look at
early examples.

5.2.1 An Early Stream Cipher — The Vigenère
This early stream cipher is commonly ascribed to the Frenchman Blaise de
Vigenère, a diplomat who served King Charles IX. It works by adding a key
repeatedly into the plaintext using the convention that ‘A’ = 0, ‘B’ = 1, . . . ,
‘Z’ = 25, and addition is carried out modulo 26 — that is, if the result is greater
than 25, we subtract as many multiples of 26 as are needed to bring is into the
range [0, . . . , 25], that is, [A, . . . , Z]. Mathematicians write this as

C = P + K mod 26

So, for example, when we add P (15) to U (20) we get 35, which we reduce to
9 by subtracting 26. 8 corresponds to J, so the encryption of P under the key U
(and of U under the key P) is J. So in this notation, Julius Caesar’s system used a
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fixed key K = D1, while Augustus Caesar’s used K = C and Vigenère used a
repeating key, also known as a running key. Various means were developed
to do this addition quickly, including printed tables and, for field use, cipher
wheels. Whatever the implementation technology, the encryption using a
repeated keyword for the key would look as shown in Figure 5.2:

Plain tobeornottobethatisthequestion

Key runrunrunrunrunrunrunrunrunrun

Cipher KIOVIEEIGKIOVNURNVJNUVKHVMGZIA

Figure 5.2: Vigenère (polyalphabetic substitution cipher)

A number of people appear to have worked out how to solve polyalphabetic
ciphers, from the womaniser Giacomo Casanova to the computing pioneer
Charles Babbage. However the first published solution was in 1863 by Friedrich
Kasiski, a Prussian infantry officer [695]. He noticed that given a long enough
piece of ciphertext, repeated patterns will appear at multiples of the keyword
length.

In Figure 5.2, for example, we see ‘KIOV’ repeated after nine letters, and ‘NU’
after six. Since three divides both six and nine, we might guess a keyword
of three letters. It follows that ciphertext letters one, four, seven and so on
all enciphered under the same keyletter; so we can use frequency analysis
techniques to guess the most likely values of this letter, and then repeat the
process for the second and third letters of the key.

5.2.2 The One-Time Pad
One way to make a stream cipher of this type proof against attacks is for the
key sequence to be as long as the plaintext, and to never repeat. This was pro-
posed by Gilbert Vernam during World War 1 [676]; its effect is that given any
ciphertext, and any plaintext of the same length, there is a key which decrypts
the ciphertext to the plaintext. Regardless of the amount of computation that
opponents can do, they are none the wiser, as all possible plaintexts are just
as likely. This system is known as the one-time pad. Leo Marks’ engaging book
on cryptography in the Special Operations Executive in World War 2 [836]
relates how one-time key material was printed on silk, which agents could
conceal inside their clothing; whenever a key had been used it was torn off
and burnt.

An example should explain all this. Suppose you had intercepted a message
from a wartime German agent which you knew started with ‘Heil Hitler’,
and the first ten letters of ciphertext were DGTYI BWPJA. This means that

1modulo 23, as the alphabet Caesar used wrote U as V, J as I, and had no W.
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the first ten letters of the one-time pad were wclnb tdefj, as shown in
Figure 5.3:

Plain heilhitler

Key wclnbtdefj

Cipher DGTYIBWPJA

Figure 5.3: A spy’s message

But once he’s burnt the piece of silk with his key material, the spy can claim
that he’s actually a member of the anti-Nazi underground resistance, and the
message actually said ‘Hang Hitler’. This is quite possible, as the key material
could just as easily have been wggsb tdefj, as shown in Figure 5.4:

Cipher DGTYIBWPJA

Key wggsbtdefj

Plain hanghitler

Figure 5.4: What the spy claimed he said

Now we rarely get anything for nothing in cryptology, and the price of the
perfect secrecy of the one-time pad is that it fails completely to protect message
integrity. Suppose for example that you wanted to get this spy into trouble,
you could change the ciphertext to DCYTI BWPJA (Figure 5.5):

Cipher DCYTIBWPJA

Key wclnbtdefj

Plain hanghitler

Figure 5.5: Manipulating the message to entrap the spy

During the Second World War, Claude Shannon proved that a cipher has
perfect secrecy if and only if there are as many possible keys as possible
plaintexts, and every key is equally likely; so the one-time pad is the only kind
of system which offers perfect secrecy [1157, 1158].

The one-time pad is still used for some diplomatic and intelligence traffic,
but it consumes as much key material as there is traffic and this is too expensive
for most applications. It’s more common for stream ciphers to use a suitable
pseudorandom number generator to expand a short key into a long keystream.
The data is then encrypted by exclusive-or’ing the keystream, one bit at a time,
with the data. It’s not enough for the keystream to appear ‘‘random’’ in
the sense of passing the standard statistical randomness tests: it must also
have the property that an opponent who gets his hands on even quite a lot of



134 Chapter 5 ■ Cryptography

keystream bits should not be able to predict any more of them. I’ll formalise
this more tightly in the next section.

Stream ciphers are commonly used nowadays in hardware applications
where the number of gates has to be minimised to save power. We’ll look
at some actual designs in later chapters, including the A5 algorithm used
to encipher GSM mobile phone traffic (in the chapter on ‘Telecom System
Security’), and the shift register systems used in pay-per-view TV and DVD
CSS (in the chapter on ‘Copyright and Privacy Protection’). However, block
ciphers are more suited for many applications where encryption is done in
software, so let’s look at them next.

5.2.3 An Early Block Cipher — Playfair
One of the best-known early block ciphers is the Playfair system. It was
invented in 1854 by Sir Charles Wheatstone, a telegraph pioneer who
also invented the concertina and the Wheatstone bridge. The reason it’s
not called the Wheatstone cipher is that he demonstrated it to Baron Playfair,
a politician; Playfair in turn demonstrated it to Prince Albert and to Viscount
Palmerston (later Prime Minister), on a napkin after dinner.

This cipher uses a 5 by 5 grid, in which we place the alphabet, permuted by
the key word, and omitting the letter ‘J’ (see Figure 5.6):

P A L M E
R S T O N
B C D F G
H I K Q U
V W X Y Z

Figure 5.6: The Playfair enciphering tableau

The plaintext is first conditioned by replacing ‘J’ with ‘I’ wherever it occurs,
then dividing it into letter pairs, preventing double letters occurring in a
pair by separating them with an ‘x’, and finally adding a ‘z’ if necessary to
complete the last letter pair. The example Playfair wrote on his napkin was
‘Lord Granville’s letter’ which becomes ‘lo rd gr an vi lx le sl et te rz’.

It is then enciphered two letters at a time using the following rules:

if the two letters are in the same row or column, they are replaced by the
succeeding letters. For example, ‘am’ enciphers to ‘LE’

otherwise the two letters stand at two of the corners of a rectangle in
the table, and we replace them with the letters at the other two corners of
this rectangle. For example, ‘lo’ enciphers to ‘MT’.
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We can now encipher our specimen text as follows:

Plain lo rd gr an vi lx le sl et te rz

Cipher MT TB BN ES WH TL MP TA LN NL NV

Figure 5.7: Example of Playfair enciphering

Variants of this cipher were used by the British army as a field cipher in
World War 1, and by the Americans and Germans in World War 2. It’s a
substantial improvement on Vigenère as the statistics which an analyst can
collect are of digraphs (letter pairs) rather than single letters, so the distribution
is much flatter and more ciphertext is needed for an attack.

Again, it’s not enough for the output of a block cipher to just look intuitively
‘random’. Playfair ciphertexts look random; but they have the property that if
you change a single letter of a plaintext pair, then often only a single letter of
the ciphertext will change. Thus using the key in Figure 5.7, rd enciphers to
TB while rf enciphers to OB and rg enciphers to NB. One consequence is that
given enough ciphertext, or a few probable words, the table (or an equivalent
one) can be reconstructed [512]. So we will want the effects of small changes
in a block cipher’s input to diffuse completely through its output: changing
one input bit should, on average, cause half of the output bits to change. We’ll
tighten these ideas up in the next section.

The security of a block cipher can be greatly improved by choosing a longer
block length than two characters. For example, the Data Encryption Standard
(DES), which is widely used in banking, has a block length of 64 bits, which
equates to eight ascii characters and the Advanced Encryption Standard (AES),
which is replacing it in many applications, has a block length of twice this. I
discuss the internal details of DES and AES below; for the time being, I’ll just
remark that an eight byte or sixteen byte block size is not enough of itself.
For example, if a bank account number always appears at the same place
in a transaction, then it’s likely to produce the same ciphertext every time a
transaction involving it is encrypted with the same key.

This might allow an opponent to cut and paste parts of two different cipher-
texts in order to produce a seemingly genuine but unauthorized transaction.
Suppose a bad man worked for a bank’s phone company, and could intercept
their traffic. If he monitored an enciphered transaction that he knew said ‘‘Pay
IBM $10,000,000’’ he might wire $1,000 to his brother causing the bank com-
puter to insert another transaction saying ‘‘Pay John Smith $1,000’’, intercept
this instruction, and make up a false instruction from the two ciphertexts that
decrypted as ‘‘Pay John Smith $10,000,000’’. So unless the cipher block is as
large as the message, the ciphertext will contain more than one block and we
will usually need some way of binding the blocks together.
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5.2.4 One-Way Functions
The third classical type of cipher is the one-way function. This evolved to
protect the integrity and authenticity of messages, which as we’ve seen
is not protected at all by many simple ciphers where it is often easy to
manipulate the ciphertext in such a way as to cause a predictable change in the
plaintext.

After the invention of the telegraph in the mid-19th century, banks rapidly
became its main users and developed systems for transferring money elec-
tronically. Of course, it isn’t the money itself which is ‘wired’ but a payment
instruction, such as:

‘To Lombard Bank, London. Please pay from our account with you no. 1234567890
the sum of £1000 to John Smith of 456 Chesterton Road, who has an account with
HSBC Bank Cambridge no. 301234 4567890123, and notify him that this was
for ‘‘wedding present from Doreen Smith’’. From First Cowboy Bank of Santa
Barbara, CA, USA. Charges to be paid by us.’

Since telegraph messages were relayed from one office to another by human
operators, it was possible for an operator to manipulate a payment message.

In the nineteenth century, banks, telegraph companies and shipping com-
panies developed code books that could not only protect transactions but also
shorten them — which was very important given the costs of international
telegrams at the time. A code book was essentially a block cipher which
mapped words or phrases to fixed-length groups of letters or numbers. So
‘Please pay from our account with you no.’ might become ‘AFVCT’. A compet-
ing technology from the 1920s was rotor machines, mechanical cipher devices
which produce a very long sequence of pseudorandom numbers and combine
them with plaintext to get ciphertext; these were independently invented by
a number of people, many of whom dreamed of making a fortune selling
them to the banking industry. Banks weren’t in general interested, but rotor
machines became the main high-level ciphers used by the combatants in
World War 2.

The banks realised that neither mechanical stream ciphers nor code books
protect message authenticity. If, for example, the codeword for ‘1000’ is
‘mauve’ and for ‘1,000,000’ is ‘magenta’, then the crooked telegraph clerk who
can compare the coded traffic with known transactions should be able to figure
this out and substitute one for the other.

The critical innovation, for the banks’ purposes, was to use a code book
but to make the coding one-way by adding the code groups together into
a number called a test key. (Modern cryptographers would describe it as a
hash value or message authentication code, terms I’ll define more carefully
later.)
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Here is a simple example. Suppose the bank has a code book with a table of
numbers corresponding to payment amounts as in Figure 5.8:

0 1 2 3 4 5 6 7 8 9
x 1000 14 22 40 87 69 93 71 35 06 58
x 10,000 73 38 15 46 91 82 00 29 64 57
x 100,000 95 70 09 54 82 63 21 47 36 18
x 1,000,000 53 77 66 29 40 12 31 05 87 94

Figure 5.8: A simple test key system

Now in order to authenticate a transaction for £376,514 we add together 53
(no millions), 54 (300,000), 29 (70,000) and 71 (6,000). (It’s common to ignore
the less significant digits of the amount.) This gives us a test key of 207.

Most real systems were more complex than this; they usually had tables
for currency codes, dates and even recipient account numbers. In the better
systems, the code groups were four digits long rather than two, and in order
to make it harder for an attacker to reconstruct the tables, the test keys were
compressed: a key of ‘7549’ might become ‘23’ by adding the first and second
digits, and the third and fourth digits, and ignoring the carry.

This made such test key systems into one-way functions in that although given
knowledge of the key it was possible to compute a test from a message, it was
not possible to reverse the process and recover a message from a test — the
test just did not contain enough information. Indeed, one-way functions had
been around since at least the seventeenth century. The scientist Robert Hooke
published in 1678 the sorted anagram ‘ceiiinosssttuu’ and revealed two years
later that it was derived from ‘Ut tensio sic uis’ — ‘the force varies as the
tension’, or what we now call Hooke’s law for a spring. (The goal was to
establish priority for the idea while giving him time to continue developing it.)

Test keys are not strong by the standards of modern cryptography. Given
somewhere between a few dozen and a few hundred tested messages, depend-
ing on the design details, a patient analyst could reconstruct enough of the
tables to forge a transaction. With a few carefully chosen messages inserted
into the banking system by an accomplice, it’s even easier still. But the banks
got away with it: test keys worked fine from the late nineteenth century
through the 1980’s. In several years working as a bank security consultant, and
listening to elderly bank auditors’ tales over lunch, I only ever heard of two
cases of fraud that exploited it: one external attempt involving cryptanalysis,
which failed because the attacker didn’t understand bank procedures, and one
successful but small fraud involving a crooked staff member. I’ll discuss the
systems which replaced test keys, and the whole issue of how to tie cryp-
tographic authentication mechanisms to procedural protection such as dual
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control, in the chapter on ‘Banking and Bookkeeping’. For the meantime, test
keys are the classic example of a one-way function used for authentication.

Later examples included functions for applications discussed in the previous
chapters, such as storing passwords in a one-way encrypted password file,
and computing a response from a challenge in an authentication protocol.

5.2.5 Asymmetric Primitives
Finally, some modern cryptosystems are asymmetric, in that different keys
are used for encryption and decryption. So, for example, many people publish
on their web page a public key with which people can encrypt messages to
send to them; the owner of the web page can then decrypt them using the
corresponding private key.

There are some pre-computer examples of this too; perhaps the best is the
postal service. You can send me a private message just as simply by addressing
it to me and dropping it into a post box. Once that’s done, I’m the only person
who’ll be able to read it. There are of course many things that can go wrong.
You might get the wrong address for me (whether by error or as a result of
deception); the police might get a warrant to open my mail; the letter might be
stolen by a dishonest postman; a fraudster might redirect my mail without my
knowledge; or a thief might steal the letter from my mailbox. There are similar
things that can go wrong with public key cryptography. False public keys can
be inserted into the system, computers can be hacked, people can be coerced
and so on. We’ll look at these problems in more detail in later chapters.

Another asymmetric application of cryptography is the digital signature. The
idea here is that I can sign a message using a private signature key and then
anybody can check this using my public signature verification key. Again, there
are pre-computer analogues in the form of manuscript signatures and seals;
and again, there is a remarkably similar litany of things that can go wrong,
both with the old way of doing things and with the new.

5.3 The Random Oracle Model

Before delving into the detailed design of modern ciphers, I want to take a few
pages to refine the definitions of the various types of cipher. (Readers who
are phobic about theoretical computer science should skip this section at a
first pass; I’ve included it because a basic grasp of the terminology of random
oracles is needed to decipher many recent research papers on cryptography.)

The random oracle model seeks to formalize the idea that a cipher is ‘good’ if,
when viewed in a suitable way, it is indistinguishable from a random function
of a certain type. I will call a cryptographic primitive pseudorandom if it passes
all the statistical and other tests which a random function of the appropriate
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type would pass, in whatever model of computation we are using. Of course,
the cryptographic primitive will actually be an algorithm, implemented as an
array of gates in hardware or a program in software; but the outputs should
‘look random’ in that they’re indistinguishable from a suitable random oracle
given the type and the number of tests that our computation model permits.

In this way, we can hope to separate the problem of designing ciphers from
the problem of using them correctly. Mathematicians who design ciphers can
provide evidence that their cipher is pseudorandom. Quite separately, a
computer scientist who has designed a cryptographic protocol can try to
prove that it is secure on the assumption that the crypto primitives used
to implement it are pseudorandom. The process isn’t infallible, as we saw
with proofs of protocol correctness. Theorems can have bugs, just like pro-
grams; the problem could be idealized wrongly; and the mathematicians
might be using a different model of computation from the computer scien-
tists. In fact, there is a live debate among crypto researchers about whether
formal models and proofs are valuable [724]. But crypto theory can help us
sharpen our understanding of how ciphers behave and how they can safely
be used.

We can visualize a random oracle as an elf sitting in a black box with a
source of physical randomness and some means of storage (see Figure 5.9) —
represented in our picture by the dice and the scroll. The elf will accept inputs
of a certain type, then look in the scroll to see whether this query has ever
been answered before. If so, it will give the answer it finds there; if not,
it will generate an answer at random by throwing the dice. We’ll further
assume that there is some kind of bandwidth limitation — that the elf will
only answer so many queries every second. This ideal will turn out to be
useful as a way of refining our notions of a stream cipher, a hash function,
a block cipher, a public key encryption algorithm and a digital signature
scheme.

Figure 5.9: The random oracle
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Finally, we can get a useful simplification of our conceptual model by
noting that encryption can be used to protect data across time as well as across
distance. A good example is when we encrypt data before storing it with a
third-party backup service, and may decrypt it later if we have to recover from
a disk crash. In this case, we only need a single encryption/decryption device,
rather than having one at each end of a communications link. For simplicity,
let us assume it is this sort of application we are modelling here. The user takes
a diskette to the cipher machine, types in a key, issues an instruction, and the
data get transformed in the appropriate way. A year later, she comes back to
get the data decrypted and verified.

We shall now look at this model in more detail for various different
cryptographic primitives.

5.3.1 Random Functions — Hash Functions
The first type of random oracle is the random function. A random function
accepts an input string of any length and outputs a random string of fixed
length, say n bits long. So the elf just has a simple list of inputs and outputs,
which grows steadily as it works. (We’ll ignore any effects of the size of the
scroll and assume that all queries are answered in constant time.)

Random functions are our model for one-way functions, also known as
cryptographic hash functions, which have many practical uses. They were first
used in computer systems for one-way encryption of passwords in the 1960s
and, as I mentioned in the chapter on security protocols, are used today in
a number of authentication systems. They are used to compute checksums
on files in forensic applications: presented with a computer seized from a
suspect, you can compute hash values of the files to identify which files are
already known (such as system files) and which are novel (such as user data).
Hash values are also used as a means of checking the integrity of files, as
they will change if a file is corrupted. In messaging applications, hashes are
often known as message digests; given a message M we can pass it through a
pseudorandom function to get a digest, say h(M), which can stand in for the
message in various applications. One example is digital signature: signature
algorithms tend to be slow if the message is long, so it’s usually convenient to
sign a message digest rather than the message itself.

Another application is timestamping. If we want evidence that we possessed
a given electronic document by a certain date, we might submit it to an online
time-stamping service. However, if the document is still secret — for example
an invention which we plan to patent, and for which we merely want to
establish a priority date — then we might not send the timestamping service
the whole document, but just the message digest.
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5.3.1.1 Properties

The first main property of a random function is one-wayness. Given knowledge
of an input x we can easily compute the hash value h(x), but it is very difficult
given the hash value h(x) to find a corresponding preimage x if one is not
already known. (The elf will only pick outputs for given inputs, not the other
way round.) As the output is random, the best an attacker who wants to invert
a random function can do is to keep on feeding in more inputs until he gets
lucky. A pseudorandom function will have the same properties, or they could
be used to distinguish it from a random function, contrary to our definition. It
follows that a pseudorandom function will also be a one-way function, provided
there are enough possible outputs that the opponent can’t find a desired target
output by chance. This means choosing the output to be an n-bit number
where the opponent can’t do anything near 2n computations.

A second property of pseudorandom functions is that the output will not
give any information at all about even part of the input. Thus a one-way
encryption of the value x can be accomplished by concatenating it with a
secret key k and computing h(x, k). If the hash function isn’t random enough,
though, using it for one-way encryption in this manner is asking for trouble.
A topical example comes from the authentication in GSM mobile phones,
where a 16 byte challenge from the base station is concatenated with a 16 byte
secret key known to the phone into a 32 byte number, and passed through
a hash function to give an 11 byte output [226]. The idea is that the phone
company also knows k and can check this computation, while someone who
eavesdrops on the radio link can only get a number of values of the random
challenge x and corresponding output from h(x, k). So the eavesdropper must
not be able to get any information about k, or compute h(y, k) for a new
input y. But the one-way function used by many phone companies isn’t one-
way enough, with the result that an eavesdropper who can pretend to be
a base station and send a phone about 150,000 suitable challenges and get
the responses can compute the key. I’ll discuss this failure in more detail in
section 20.3.2.

A third property of pseudorandom functions with sufficiently long outputs
is that it is hard to find collisions, that is, different messages M1 �= M2 with
h(M1) = h(M2). Unless the opponent can find a shortcut attack (which would
mean the function wasn’t really pseudorandom) then the best way of finding a
collision is to collect a large set of messages Mi and their corresponding hashes
h(Mi), sort the hashes, and look for a match. If the hash function output is an
n-bit number, so that there are 2n possible hash values, then the number of
hashes the enemy will need to compute before he can expect to find a match
will be about the square root of this, namely 2n/2 hashes. This fact is of huge
importance in security engineering, so let’s look at it more closely.
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5.3.1.2 The Birthday Theorem

The birthday theorem gets its name from the following problem. A maths
teacher asks a typical class of 30 pupils what they think is the probability that
two of them have the same birthday. Most pupils will intuitively think it’s
unlikely, and the maths teacher then asks the pupils to state their birthdays
one after another. As the result seems unlikely to most people, it’s also known
as the ‘birthday paradox’. The odds of a match exceed 50% once 23 pupils have
been called.

The birthday theorem was first invented in the 1930’s to count fish, which
led to its also being known as capture-recapture statistics [1123]. Suppose there
are N fish in a lake and you catch m of them, ring them and throw them back,
then when you first catch a fish you’ve ringed already, m should be ‘about’
the square root of N. The intuitive reason why this holds is that once you have√

N samples, each could potentially match any of the others, so the number of
possible matches is about

√
N x

√
N or N, which is what you need2.

This theorem has many applications for the security engineer. For example,
if we have a biometric system which can authenticate a person’s claim to
identity with a probability of only one in a million that two randomly selected
subjects will be falsely identified as the same person, this doesn’t mean that
we can use it as a reliable means of identification in a university with a user
population of twenty thousand staff and students. This is because there will
be almost two hundred million possible pairs. In fact, you expect to find the
first collision — the first pair of people who can be mistaken for each other by
the system — once you have somewhat over a thousand people enrolled.

There are some applications where collision-search attacks aren’t a problem,
such as in challenge-response protocols where an attacker would have to be
able to find the answer to the challenge just issued, and where you can prevent
challenges repeating. (For example, the challenge might be generated by
encrypting a counter.) So in identify-friend-or-foe (IFF) systems, for example,
common equipment has a response length of 48 to 80 bits.

However, there are other applications in which collisions are unacceptable.
In a digital signature application, if it were possible to find collisions with
h(M1) = h(M2) but M1 �= M2, then a Mafia owned bookstore’s web site might
get you to sign a message M1 saying something like ‘I hereby order a copy
of Rubber Fetish volume 7 for $32.95’ and then present the signature together
with an M2 saying something like ‘I hereby mortgage my house for $75,000
and please make the funds payable to Mafia Holdings Inc., Bermuda’.

For this reason, hash functions used with digital signature schemes generally
have n large enough to make them collision-free, that is, that 2n/2 computations

2More precisely, the probability that m fish chosen randomly from N fish are different is
β = N(N − 1) . . . (N − m + 1)/Nm which is asymptotically solved by N � m2/2log(1/β) [708].
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are impractical for an opponent. The two most common are MD5, which has
a 128-bit output and will thus require at most 264 computations to break, and
SHA1 with a 160-bit output and a work factor for the cryptanalyst of at most
280. However, collision search gives at best an upper bound on the strength
of a hash function, and both these particular functions have turned out to be
disappointing, with cryptanalytic attacks that I’ll describe later in section 5.6.2.
Collisions are easy to find for MD4 and MD5, while for SHA-1 it takes about
260 computations to find a collision — something that a botnet of half a million
machines should be able to do in a few days.

In any case, a pseudorandom function is also often referred to as being
collision free or collision intractable. This doesn’t mean that collisions don’t exist
— they must, as the set of possible inputs is larger than the set of pos-

sible outputs — just that you will never find any of them. The (usually
unstated) assumptions are that the output must be long enough, and that the
cryptographic design of the hash function must be sound.

5.3.2 Random Generators — Stream Ciphers
The second basic cryptographic primitive is the random generator, also known
as a keystream generator or stream cipher. This is also a random function, but
unlike in the hash function case it has a short input and a long output. (If we
had a good pseudorandom function whose input and output were a billion
bits long, and we never wanted to handle any objects larger than this, we could
turn it into a hash function by throwing away all but a few hundred bits of the
output, and turn it into a stream cipher by padding all but a few hundred bits
of the input with a constant.) At the conceptual level, however, it’s common to
think of a stream cipher as a random oracle whose input length is fixed while
the output is a very long stream of bits, known as the keystream.

It can be used quite simply to protect the confidentiality of backup data:
we go to the keystream generator, enter a key, get a long file of random bits,
and exclusive-or it with our plaintext data to get ciphertext, which we then
send to our backup contractor. We can think of the elf generating a random
tape of the required length each time he is presented with a new key as input,
giving it to us and keeping a copy of it on his scroll for reference in case he’s
given the same input again. If we need to recover the data, we go back to
the generator, enter the same key, get the same long file of random data, and
exclusive-or it with our ciphertext to get our plaintext data back again. Other
people with access to the keystream generator won’t be able to generate the
same keystream unless they know the key.

I mentioned the one-time pad, and Shannon’s result that a cipher has perfect
secrecy if and only if there are as many possible keys as possible plaintexts, and
every key is equally likely. Such security is called unconditional (or statistical)
security as it doesn’t depend either on the computing power available to the
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opponent, or on there being no future advances in mathematics which provide
a shortcut attack on the cipher.

One-time pad systems are a very close fit for our theoretical model, except
in that they are typically used to secure communications across space rather
than time: there are two communicating parties who have shared a copy of
the randomly-generated keystream in advance. Vernam’s original telegraph
cipher machine used punched paper tape; a modern diplomatic system might
use DVDs, shipped in a tamper-evident container in a diplomatic bag. Various
techniques have been used to do the random generation. Marks describes
how SOE agents’ silken keys were manufactured in Oxford by little old ladies
shuffling counters.

One important problem with keystream generators is that we want to pre-
vent the same keystream being used more than once, whether to encrypt more
than one backup tape or to encrypt more than one message sent on a com-
munications channel. During World War 2, the amount of Russian diplomatic
traffic exceeded the quantity of one-time tape they had distributed in advance
to their embassies, so it was reused. This was a serious blunder. If M1 + K = C1

and M2 + K = C2, then the opponent can combine the two ciphertexts to get
a combination of two messages: C1 − C2 = M1 − M2, and if the messages Mi

have enough redundancy then they can be recovered. Text messages do in
fact contain enough redundancy for much to be recovered, and in the case
of the Russian traffic this led to the Venona project in which the US and UK
decrypted large amounts of wartime Russian traffic afterwards and broke up
a number of Russian spy rings. The saying is: ‘Avoid the two-time tape!’

Exactly the same consideration holds for any stream cipher, and the normal
engineering practice when using an algorithmic keystream generator is to
have a seed as well as a key. Each time the cipher is used, we want it to generate
a different keystream, so the key supplied to the cipher should be different.
So if the long-term key which two users share is K, they may concatenate it
with a seed which is a message number N (or some other nonce) and then
pass it through a hash function to form a working key h(K, N). This working
key is the one actually fed to the cipher machine. The nonce may be a separate
pre-agreed key, or it may be generated at random and sent along with the
ciphertext. However, the details of key management can be quite tricky, and
the designer has to watch out for attacks in which a principal is tricked into
synchronising on the wrong key. In effect, a protocol has to be designed to
ensure that both parties can synchronise on the right working key even in the
presence of an adversary.

5.3.3 Random Permutations — Block Ciphers
The third type of primitive, and the most important in modern commercial
cryptography, is the block cipher, which we model as a random permutation.
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Here, the function is invertible, and the input plaintext and the output
ciphertext are of a fixed size. With Playfair, both input and output are two
characters; with DES, they’re both bit strings of 64 bits. Whatever the number
of symbols and the underlying alphabet, encryption acts on a block of fixed
length. (So if you want to encrypt a shorter input, you have to pad it as with
the final ‘z’ in our Playfair example.)

We can visualize block encryption as follows. As before, we have an elf in a
box with dice and a scroll. This has on the left a column of plaintexts and on
the right a column of ciphertexts. When we ask the elf to encrypt a message,
it checks in the left hand column to see if it has a record of it. If not, it uses
the dice to generate a random ciphertext of the appropriate size (and which
doesn’t appear yet in the right hand column of the scroll), and then writes
down the plaintext/ciphertext pair in the scroll. If it does find a record, it gives
us the corresponding ciphertext from the right hand column.

When asked to decrypt, the elf does the same, but with the function of
the columns reversed: he takes the input ciphertext, checks it (this time on the
right hand scroll) and if he finds it he gives the message with which it was
previously associated. If not, he generates a message at random (which does
not already appear in the left column) and notes it down.

A block cipher is a keyed family of pseudorandom permutations. For each
key, we have a single permutation which is independent of all the others. We
can think of each key as corresponding to a different scroll. The intuitive idea
is that a cipher machine should output the ciphertext given the plaintext and
the key, and output the plaintext given the ciphertext and the key, but given
only the plaintext and the ciphertext it should output nothing.

We will write a block cipher using the notation established for encryption
in the chapter on protocols:

C = {M}K

The random permutation model also allows us to define different types of
attack on block ciphers. In a known plaintext attack, the opponent is just given a
number of randomly chosen inputs and outputs from the oracle corresponding
to a target key. In a chosen plaintext attack, the opponent is allowed to put a
certain number of plaintext queries and get the corresponding ciphertexts. In
a chosen ciphertext attack he gets to make a number of ciphertext queries. In a
chosen plaintext/ciphertext attack he is allowed to make queries of either type.
Finally, in a related key attack he can make queries that will be answered using
keys related to the target key K, such as K + 1 and K + 2.

In each case, the objective of the attacker may be either to deduce the answer
to a query he hasn’t already made (a forgery attack), or to recover the key
(unsurprisingly known as a key recovery attack).

This precision about attacks is important. When someone discovers a vul-
nerability in a cryptographic primitive, it may or may not be relevant to your
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application. Often it won’t be, but will have been hyped by the media — so
you will need to be able to explain clearly to your boss and your customers
why it’s not a problem. So you have to look carefully to find out exactly what
kind of attack has been found, and what the parameters are. For example,
the first major attack announced on the Data Encryption Standard algorithm
requires 247 chosen plaintexts to recover the key, while the next major attack
improved this to 243 known plaintexts. While these attacks were of great sci-
entific importance, their practical engineering effect was zero, as no practical
systems make that much known (let alone chosen) text available to an attacker.
Such attacks are often referred to as certificational. They can have a commercial
effect, though: the attacks on DES undermined confidence in it and started
moving people to other ciphers. In some other cases, an attack that started off
as certificational has been developed by later ideas into an exploit.

Which sort of attacks you should be worried about depends on your
application. With a broadcast entertainment system, for example, a bad man
can buy a decoder, observe a lot of material and compare it with the enciphered
broadcast signal; so a known-plaintext attack is the main threat. But there are
surprisingly many applications where chosen-plaintext attacks are possible.
Obvious ones include IFF, where the enemy can send challenges of his choice
to any aircraft in range of one of his radars; and ATMs, where if you allow
customers to change their PINs, an attacker can change his PIN through a range
of possible values and observe the enciphered equivalents by wiretapping the
line from the ATM to the bank. A more traditional example is diplomatic
messaging systems, where it’s been known for a host government to give an
ambassador a message to transmit to his capital that’s been specially designed
to help the local cryptanalysts fill out the missing gaps in the ambassador’s
code book [676]. In general, if the opponent can insert any kind of message
into your system, it’s chosen-plaintext attacks you should worry about.

The other attacks are more specialized. Chosen plaintext/ciphertext attacks
may be a worry where the threat is a lunchtime attacker: someone who gets
temporary access to some cryptographic equipment while its authorized
user is out. Related-key attacks are a concern where the block cipher is used
as a building block in the construction of a hash function (which we’ll
discuss below).

5.3.4 Public Key Encryption and Trapdoor One-Way
Permutations
A public-key encryption algorithm is a special kind of block cipher in which the
elf will perform the encryption corresponding to a particular key for anyone
who requests it, but will do the decryption operation only for the key’s owner.
To continue with our analogy, the user might give a secret name to the scroll
that only she and the elf know, use the elf’s public one-way function to
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compute a hash of this secret name, publish the hash, and instruct the elf to
perform the encryption operation for anybody who quotes this hash.

This means that a principal, say Alice, can publish a key and if Bob wants
to, he can now encrypt a message and send it to her, even if they have never
met. All that is necessary is that they have access to the oracle. There are some
more details that have to be taken care of, such as how Alice’s name can be
bound to the key, and indeed whether it means anything to Bob; I’ll deal with
these later.

A common way of implementing public key encryption is the trapdoor
one-way permutation. This is a computation which anyone can perform, but
which can be reversed only by someone who knows a trapdoor such as a secret
key. This model is like the ‘one-way function’ model of a cryptographic hash
function. Let us state it formally nonetheless: a public key encryption primitive
consists of a function which given a random input R will return two keys, KR
(the public encryption key) and KR−1 (the private decryption key) with the
properties that

1. Given KR, it is infeasible to compute KR−1 (so it’s not possible to com-
pute R either);

2. There is an encryption function {. . .} which, applied to a message M
using the encryption key KR, will produce a ciphertext C = {M}KR; and

3. There is a decryption function which, applied to a ciphertext C using the
decryption key KR−1, will produce the original message M = {C}KR−1 .

For practical purposes, we will want the oracle to be replicated at both ends
of the communications channel, and this means either using tamper-resistant
hardware or (more commonly) implementing its functions using mathematics
rather than metal. There are several more demanding models than this, for
example to analyze security in the case where the opponent can get ciphertexts
of his choice decrypted, with the exception of the target ciphertext. But this
will do for now.

5.3.5 Digital Signatures
The final cryptographic primitive which we’ll define here is the digital sig-
nature. The basic idea is that a signature on a message can be created by only
one person, but checked by anyone. It can thus perform the sort of function
in the electronic world that ordinary signatures do in the world of paper.
Applications include signing software updates, so that a PC can tell that an
update to Windows was really produced by Microsoft rather than by a villain.

Signature schemes can be deterministic or randomized: in the first, computing
a signature on a message will always give the same result and in the second,
it will give a different result. (The latter is more like handwritten signatures;
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no two are ever alike but the bank has a means of deciding whether a given
specimen is genuine or forged). Also, signature schemes may or may not
support message recovery. If they do, then given the signature, anyone can
recover the message on which it was generated; if they don’t, then the verifier
needs to know or guess the message before he can perform the verification.
(There are further, more specialised, signature schemes such as blind signatures
and threshold signatures but I’ll postpone discussion of them for now.)

Formally, a signature scheme, like public key encryption scheme, has a
keypair generation function which given a random input R will return two
keys, σR (the private signing key) and VR (the public signature verification
key) with the properties that

1. Given the public signature verification key VR, it is infeasible to com-
pute the private signing key σR;

2. There is a digital signature function which given a message M and a
private signature key σR, will produce a signature SigσR(M); and

3. There is a signature verification function which, given the signature
SigσR(M) and the public signature verification key VR will output TRUE
if the signature was computed correctly with σR and otherwise output
FALSE.

We can model a simple digital signature algorithm as a random function that
reduces any input message to a one-way hash value of fixed length, followed
by a special kind of block cipher in which the elf will perform the operation
in one direction, known as signature, for only one principal, while in the other
direction, it will perform verification for anybody.

Signature verification can take two forms. In the basic scheme, the elf (or the
signature verification algorithm) only outputs TRUE or FALSE depending on
whether the signature is good. But in a scheme with message recovery, anyone
can input a signature and get back the message corresponding to it. In our
elf model, this means that if the elf has seen the signature before, it will give
the message corresponding to it on the scroll, otherwise it will give a random
value (and record the input and the random output as a signature and message
pair). This is sometimes desirable: when sending short messages over a low
bandwidth channel, it can save space if only the signature has to be sent rather
than the signature plus the message. An example is in the machine-printed
postage stamps, or indicia, being brought into use in many countries: the
stamp may consist of a 2-d barcode with a digital signature made by the postal
meter and which contains information such as the value, the date and the
sender’s and recipient’s post codes. We give some more detail about this at
the end of section 14.3.2.
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However, in the general case we do not need message recovery, as the
message to be signed may be of arbitrary length and so we will first pass it
through a hash function and then sign the hash value. As hash functions are
one-way, the resulting compound signature scheme does not have message
recovery — although if the underlying signature scheme does, then the hash
of the message can be recovered from the signature.

5.4 Symmetric Crypto Primitives

Now that we have defined the basic crypto primitives, we will look under the
hood to see how they can be implemented in practice. While most explanations
are geared towards graduate mathematics students, the presentation I’ll give
here is based on one I’ve developed over several years with computer science
students. So I hope it will let the non-mathematician grasp the essentials. In
fact, even at the research level, most of cryptography is as much computer
science as mathematics. Modern attacks on ciphers are put together from
guessing bits, searching for patterns, sorting possible results, and so on rather
than from anything particularly highbrow.

We’ll focus in this section on block ciphers, and then see in the next section
how you can make hash functions and stream ciphers from them, and vice
versa. (In later chapters, we’ll also look at some special-purpose ciphers.)

5.4.1 SP-Networks
Claude Shannon suggested in the 1940’s that strong ciphers could be built
by combining substitution with transposition repeatedly. For example, one
might add some key material to a block of input text, and then shuffle subsets
of the input, and continue in this way a number of times. He described the
properties of a cipher as being confusion and diffusion — adding unknown key
values will confuse an attacker about the value of a plaintext symbol, while
diffusion means spreading the plaintext information through the ciphertext.
Block ciphers need diffusion as well as confusion.

The earliest block ciphers were simple networks which combined sub-
stitution and permutation circuits, and so were called SP-networks [681].
Figure 5.10 shows an SP-network with sixteen inputs, which we can imagine
as the bits of a sixteen-bit number, and two layers of four-bit invertible sub-
stitution boxes (or S-boxes), each of which can be visualized as a lookup table
containing some permutation of the numbers 0 to 15.

The point of this arrangement is that if we were to implement an arbitrary 16
bit to 16 bit function in digital logic, we would need 220 bits of memory — one
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lookup table of 216 bits for each single output bit. That’s hundreds of thousands
of gates, while a four bit to four bit function takes only 4 x 24 or 64 bits of
memory. One might hope that with suitable choices of parameters, the function
produced by iterating this simple structure would be indistinguishable from a
random 16 bit to 16 bit function to an opponent who didn’t know the value of
the key. The key might consist of some choice of a number of four-bit S-boxes,
or it might be added at each round to provide confusion and the resulting text
fed through the S-boxes to provide diffusion.

Three things need to be done to make such a design secure:

1. the cipher needs to be ‘‘wide’’ enough

2. it needs to have enough rounds, and

3. the S-boxes need to be suitably chosen.

5.4.1.1 Block Size

First, a block cipher which operated on sixteen bit blocks would have rather
limited applicability, as an opponent could just build a dictionary of plaintext
and ciphertext blocks as he observed them. The birthday theorem tells us that
even if the input plaintexts were random, he’d expect to find a match as soon
as he had seen a little over 28 blocks. So a practical block cipher will usually
deal with plaintexts and ciphertexts of 64 bits, 128 bits or even more. So if we
are using four-bit to four-but S-boxes, we may have 16 of them (for a 64 bit
block size) or 32 of them (for a 128 bit block size).

5.4.1.2 Number of Rounds

Second, we have to have enough rounds. The two rounds in Figure 5.10 are
completely inadequate, as an opponent can deduce the values of the S-boxes
by tweaking input bits in suitable patterns. For example, he could hold the
rightmost 12 bits constant and try tweaking the leftmost four bits, to deduce
the values in the top left S-box. (The attack is slightly more complicated than
this, as sometimes a tweak in an input bit to an S-box won’t produce a change
in any output bit, so we have to change one of its other inputs and tweak
again. But implementing it is still a simple student exercise.)

The number of rounds we require depends on the speed with which data
diffuse through the cipher. In the above simple example, diffusion is very slow
because each output bit from one round of S-boxes is connected to only one
input bit in the next round. Instead of having a simple permutation of the
wires, it is more efficient to have a linear transformation in which each input
bit in one round is the exclusive-or of several output bits in the previous round.
Of course, if the block cipher is to be used for decryption as well as encryption,
this linear transformation will have to be invertible. We’ll see some concrete
examples below in the sections on Serpent and AES.
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Figure 5.10: A simple 16-bit SP-network block cipher

5.4.1.3 Choice of S-Boxes

The design of the S-boxes also affects the number of rounds required for
security, and studying bad choices gives us our entry into the deeper theory
of block ciphers. Suppose that the S-box were the permutation that maps the
inputs (0,1,2,. . . ,15) to the outputs (5,7,0,2,4,3,1,6,8,10,15,12,9,11,14,13). Then
the most significant bit of the input would come through unchanged as the
most significant bit of the output. If the same S-box were used in both rounds
in the above cipher, then the most significant bit of the input would pass
through to become the most significant bit of the output. This would usually
be a bad thing; we certainly couldn’t claim that our cipher was pseudorandom.

5.4.1.4 Linear Cryptanalysis

Attacks on real block ciphers are usually harder to spot than in this artificial
example, but they use the same ideas. It might turn out that the S-box had
the property that bit one of the input was equal to bit two plus bit four
of the output; more commonly, there will be linear approximations to an S-box
which hold with a certain probability. Linear cryptanalysis [602, 843] proceeds
by collecting a number of relations such as ‘bit 2 plus bit 5 of the input to the
first S-box is equal to bit 1 plus bit 8 of the output, with probability 13/16’
and then searching for ways to glue them together into an algebraic relation
between input bits, output bits and key bits that holds with a probability
different from one half. If we can find a linear relationship that holds over the
whole cipher with probability p = 0.5 + 1/M, then according to probability
theory we can expect to start recovering keybits once we have about M2

known texts. If the value of M2 for the best linear relationship is greater than
the total possible number of known texts (namely 2n where the inputs and
outputs are n bits wide), then we consider the cipher to be secure against linear
cryptanalysis.
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5.4.1.5 Differential Cryptanalysis

Differential Cryptanalysis [170, 602] is similar but is based on the probability that
a given change in the input to an S-box will give rise to a certain change in the
output. A typical observation on an 8-bit S-box might be that ‘if we flip input
bits 2, 3, and 7 at once, then with probability 11/16 the only output bits that
will flip are 0 and 1’. In fact, with any nonlinear Boolean function, tweaking
some combination of input bits will cause some combination of output bits to
change with a probability different from one half. The analysis procedure is
to look at all possible input difference patterns and look for those values δi,
δo such that an input change of δi will produce an output change of δo with
particularly high (or low) probability.

As in linear cryptanalysis, we then search for ways to join things up so that
an input difference which we can feed into the cipher will produce a known
output difference with a useful probability over a number of rounds. Given
enough chosen inputs, we will see the expected output and be able to make
deductions about the key. As in linear cryptanalysis, it’s common to consider
the cipher to be secure if the number of texts required for an attack is greater
than the total possible number of different texts for that key. (We have to be
careful though of pathological cases, such as if you had a cipher with a 32-bit
block and a 128-bit key with a differential attack whose success probability
given a single pair was 2−40. Given a lot of text under a number of keys, we’d
eventually solve for the current key.)

There are a quite a few variants on these two themes. For example, instead of
looking for high probability differences, we can look for differences that can’t
happen (or that happen only rarely). This has the charming name of impossible
cryptanalysis, but it is quite definitely possible against many systems [169].
There are also various specialised attacks on particular ciphers.

Block cipher design involves a number of trade-offs. For example, we can
reduce the per-round information leakage, and thus the required number of
rounds, by designing the rounds carefully. However, a complex design might
be slow in software, or need a lot of gates in hardware, so using simple rounds
but more of them might have been better. Simple rounds may also be easier
to analyze. A prudent designer will also use more rounds than are strictly
necessary to block the attacks known today, in order to give some margin of
safety against improved mathematics in the future. We may be able to show
that a cipher resists all the attacks we know of, but this says little about whether
it will resist the attacks we don’t know of yet. (A general security proof for a
block cipher would appear to imply a proof about an attacker’s computational
powers, which might entail a result such as P �= NP that would revolutionize
computer science.)

The point that the security engineer should remember is that block cipher
cryptanalysis is a complex subject about which we have a fairly extensive
theory. Use an off-the-shelf design that has been thoroughly scrutinized
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by experts, rather than rolling your own; and if there’s a compelling reason
to use a proprietary cipher (for example, if you want to use a patented design to
stop other people copying a product) then get it reviewed by experts. Cipher
design is not an amateur sport any more.

5.4.1.6 Serpent

As a concrete example, the encryption algorithm ‘Serpent’ is an SP-network
with input and output block sizes of 128 bits. These are processed through 32
rounds, in each of which we first add 128 bits of key material, then pass the text
through 32 S-boxes of 4 bits width, and then perform a linear transformation
that takes each output of one round to the inputs of a number of S-boxes
in the next round. Rather than each input bit in one round coming from a
single output bit in the last, it is the exclusive-or of between two and seven of
them. This means that a change in an input bit propagates rapidly through the
cipher — a so-called avalanche effect which makes both linear and differential
attacks harder. After the final round, a further 128 bits of key material
are added to give the plaintext. The 33 times 128 bits of key material required
are computed from a user supplied key of up to 256 bits.

This is a real cipher using the structure of Figure 5.10, but modified
to be ‘wide’ enough and to have enough rounds. The S-boxes are chosen to
make linear and differential analysis hard; they have fairly tight bounds on
the maximum linear correlation between input and output bits, and on the
maximum effect of toggling patterns of input bits. Each of the 32 S-boxes in a
given round is the same; this means that bit-slicing techniques can be used to
give a very efficient software implementation on 32-bit processors.

Its simple structure makes Serpent easy to analyze, and it can be shown that
it withstands all the currently known attacks. A full specification of Serpent
is given in [60] and can be downloaded, together with implementations in a
number of languages, from [61].

5.4.2 The Advanced Encryption Standard (AES)
This discussion has prepared us to describe the Advanced Encryption Stan-
dard, an algorithm also known as Rijndael after its inventors Vincent Rijmen
and Joan Daemen [342]. This algorithm acts on 128-bit blocks and can use a
key of 128, 192 or 256 bits in length. It is an SP-network; in order to specify it,
we need to fix the S-boxes, the linear transformation between the rounds, and
the way in which the key is added into the computation.

AES uses a single S-box which acts on a byte input to give a byte output.
For implementation purposes it can be regarded simply as a lookup table of
256 bytes; it is actually defined by the equation S(x) = M(1/x) + b over the
field GF(28) where M is a suitably chosen matrix and b is a constant. This
construction gives tight differential and linear bounds.
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The linear transformation is based on arranging the 16 bytes of the value
being enciphered in a square and then doing bytewise shuffling and mixing
operations. (AES is descended from an earlier cipher called Square, which
introduced this technique.)

The first step in the linear transformation is the shuffle in which the top row
of four bytes is left unchanged, while the second row is shifted one place to
the left, the third row by two places and the fourth row by three places. The
second step is a column mixing step in which the four bytes in a column are
mixed using a matrix multiplication. This is illustrated in Figure 5.11 which
shows, as an example, how a change in the value of the third byte in the first
column is propagated. The effect of this combination is that a change in the
input to the cipher can potentially affect all of the output after just two rounds.

The key material is added byte by byte after the linear transformation. This
means that 16 bytes of key material are needed per round; they are derived
from the user supplied key material by means of a recurrence relation.

The algorithm uses 10 rounds with 128-bit keys, 12 rounds with 192-bit keys
and 14 rounds with 256-bit keys. These give a reasonable margin of safety; the
best shortcut attacks known at the time of writing (2007) can tackle 7 rounds
for 128-bit keys, and 9 rounds for 192- and 256-bit keys [16]. The general belief
in the block cipher community is that even if advances in the state of the art
do permit attacks on AES with the full number of rounds, they will be purely
certificational attacks in that they will require infeasibly large numbers of texts.
(AES’s margin of safety against attacks that require only feasible numbers of
texts is about 100%.) Although there is no proof of security — whether in the
sense of pseudorandomness, or in the weaker sense of an absence of shortcut
attacks of known types — there is now a high level of confidence that AES is
secure for all practical purposes. The NSA has since 2005 approved AES with
128-bit keys for protecting information up to SECRET and with 256-bit keys
for TOP SECRET.
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Figure 5.11: The AES linear transformation, illustrated by its effect on byte 3 of the input
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Even although I was an author of Serpent which was an unsuccessful finalist
in the AES competition (the winner Rijndael got 86 votes, Serpent 59 votes,
Twofish 31 votes, RC6 23 votes and MARS 13 votes at the last AES conference),
and although Serpent was designed to have an even larger security margin
than Rijndael, I recommend to my clients that they use AES where a general-
purpose block cipher is required. I recommend the 256-bit-key version, and
not because I think that the 10 rounds of the 128-bit-key variant will be broken
anytime soon. Longer keys are better because some key bits often leak in real
products, as I’ll discuss at some length in the chapters on tamper-resistance
and emission security. It does not make sense to implement Serpent as well,
‘just in case AES is broken’: the risk of a fatal error in the algorithm negotiation
protocol is orders of magnitude greater than the risk that anyone will come
up with a production attack on AES. (We’ll see a number of examples later
where using multiple algorithms, or using an algorithm like DES multiple
times, caused something to break horribly.)

The definitive specification of AES is Federal Information Processing Stan-
dard 197, and its inventors have written a book describing its design in
detail [342]. Other information, from book errata to links to implementations,
can be found on the AES Lounge web page [16].

One word of warning: the most likely practical attacks on a real imple-
mentation of AES include timing analysis and power analysis, both of which
I discuss in Part II in the chapter on emission security. In timing analysis,
the risk is that an opponent observes cache misses and uses them to work
out the key. The latest versions of this attack can extract a key given the
precise measurements of the time taken to do a few hundred cryptographic
operations. In power analysis, an opponent uses measurements of the current
drawn by the device doing the crypto — think of a bank smartcard that a
customer places in a terminal in a Mafia-owned shop. The two overlap; cache
misses cause a device like a smartcard to draw more power — and can also
be observed on remote machines by an opponent who can measure the time
taken to encrypt. The implementation details matter.

5.4.3 Feistel Ciphers
Many block ciphers use a more complex structure, which was invented by
Feistel and his team while they were developing the Mark XII IFF in the late
1950’s and early 1960’s. Feistel then moved to IBM and founded a research
group which produced the Data Encryption Standard, (DES) algorithm, which
is still the mainstay of financial transaction processing security.

A Feistel cipher has the ladder structure shown in Figure 5.12. The input is
split up into two blocks, the left half and the right half. A round function f1 of
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the left half is computed and combined with the right half using exclusive-or
(binary addition without carry), though in some Feistel ciphers addition with
carry is also used. (We use the notation ⊕ for exclusive-or.) Then, a function
f2 of the right half is computed and combined with the left half, and so
on. Finally (if the number of rounds is even) the left half and right half are
swapped.
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Figure 5.12: The Feistel cipher structure
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A notation which you may see for the Feistel cipher is ψ(f , g, h, . . .) where
f , g, h, . . . are the successive round functions. Under this notation, the above
cipher is ψ(f1, f2, . . . f2k−1, f2k). The basic result that enables us to decrypt a Feistel
cipher — and indeed the whole point of his design — is that:

ψ−1(f1, f2, . . . , f2k−1, f2k) = ψ(f2k, f2k−1, . . . , f2, f1)

In other words, to decrypt, we just use the round functions in the reverse
order. Thus the round functions fi do not have to be invertible, and the Feistel
structure lets us turn any one-way function into a block cipher. This means
that we are less constrained in trying to choose a round function with good
diffusion and confusion properties, and which also satisfies any other design
constraints such as code size, table size, software speed, hardware gate count,
and so on.

5.4.3.1 The Luby-Rackoff Result

The key theoretical result on Feistel ciphers was proved by Mike Luby and
Charlie Rackoff in 1988. They showed that if fi were random functions, then
ψ(f1, f2, f3) was indistinguishable from a random permutation under chosen
plaintext attack, and this result was soon extended to show that ψ(f1, f2, f3, f4)
was indistinguishable under chosen plaintext/ciphertext attack — in other
words, it was a pseudorandom permutation.

There are a number of technicalities we omit. In engineering terms, the
effect is that given a really good round function, four rounds of Feistel are
enough. So if we have a hash function in which we have confidence, it is
straightforward to construct a block cipher from it: use four rounds of keyed
hash in a Feistel network.

5.4.3.2 DES

The DES algorithm is widely used in banking, government and embedded
applications. For example, it is the standard in automatic teller machine
networks. It is a Feistel cipher, with a 64-bit block and 56-bit key. Its round
function operates on 32-bit half blocks and consists of three operations:

first, the block is expanded from 32 bits to 48;

next, 48 bits of round key are mixed in using exclusive-or;

the result is passed through a row of eight S-boxes, each of which takes a
six-bit input and provides a four-bit output;

finally, the bits of the output are permuted according to a fixed pattern.
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The effect of the expansion, key mixing and S-boxes is shown in Figure 5.13:

Si – 1 Si + 1

Key added
in here

• • • • • •Si

Figure 5.13: The DES round function

The round keys are derived from the user-supplied key by using each user
key bit in twelve different rounds according to a slightly irregular pattern.
A full specification of DES is given in [936]; code can be found in [1125] or
downloaded from many places on the web.

DES was introduced in 1974 and caused some controversy. The most telling
criticism was that the key is too short. Someone who wants to find a 56 bit
key using brute force, that is by trying all possible keys, will have a total
exhaust time of 256 encryptions and an average solution time of half that, namely
255 encryptions. Whit Diffie and Martin Hellman argued in 1977 that a DES
keysearch machine could be built with a million chips, each testing a million
keys a second; as a million is about 220, this would take on average 215 seconds,
or a bit over 9 hours, to find the key. They argued that such a machine could
be built for $20 million dollars in 1977 [386]. IBM, whose scientists invented
DES, retorted that they would charge the US government $200 million to build
such a machine. (Perhaps both were right.)

During the 1980’s, there were persistent rumors of DES keysearch machines
being built by various intelligence agencies, but the first successful public
keysearch attack took place in 1997. In a distributed effort organised over
the net, 14,000 PCs computers took more than four months to find the key
to a challenge. In 1998, the Electronic Frontier Foundation (EFF) built a DES
keysearch machine called Deep Crack for under $250,000 which broke a
DES challenge in 3 days. It contained 1,536 chips run at 40MHz, each chip
containing 24 search units which each took 16 cycles to do a test decrypt. The
search rate was thus 2.5 million test decryptions per second per search unit, or
60 million keys per second per chip. The design of the cracker is public and can
be found at [423]. By 2006, Sandeep Kumar and colleagues at the universities
of Bochum and Kiel built a machine using 120 FPGAs and costing $10,000,
which could break DES in 7 days on average [755]. A modern botnet with half
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a million machines would take a few hours. So the key length of DES is now
definitely inadequate, and banks have for some years been upgrading their
payment systems.

Another criticism of DES was that, since IBM kept its design principles secret
at the request of the US government, perhaps there was a ‘trapdoor’ which
would give them easy access. However, the design principles were published
in 1992 after differential cryptanalysis was invented and published [326].
Their story was that IBM had discovered these techniques in 1972, and the
US National Security Agency (NSA) even earlier. IBM kept the design details
secret at the NSA’s request. We’ll discuss the political aspects of all this
in 24.3.9.1.

We now have a fairly thorough analysis of DES. The best known shortcut
attack, that is, a cryptanalytic attack involving less computation than keysearch,
is a linear attack using 242 known texts. DES would be secure with more than
20 rounds, but for practical purposes its security is limited by its keylength. I
don’t know of any real applications where an attacker might get hold of even
240 known texts. So the known shortcut attacks are not an issue. However, its
growing vulnerability to keysearch makes DES unusable in its original form.
If Moore’s law continues, than by 2020 it might be possible to find a DES key
on a single PC in a few months, so even low-grade systems such as taxi meters
will be vulnerable to brute force-cryptanalysis. As with AES, there are also
attacks based on timing analysis and power analysis, but because of DES’s
structure, the latter are more serious.

The usual way of dealing with the DES keysearch problem is to use
the algorithm multiple times with different keys. Banking networks have
largely moved to triple-DES, a standard since 1999 [936]. Triple-DES does an
encryption, then a decryption, and then a further encryption, all done with
independent keys. Formally:

3DES(k0, k1, k2; M) = DES(k2, DES−1(k1, DES(k0; M)))

The reason for this design is that by setting the three keys equal, one gets the
same result as a single DES encryption, thus giving a backwards compatibility
mode with legacy equipment. (Some banking systems use two-key triple-DES
which sets k2 = k0; this gives an intermediate step between single and triple
DES). New systems now use AES as of choice, but banking systems are deeply
committed to using block ciphers with an eight-byte block size, because of the
message formats used in the many protocols by which ATMs, point-of-sale
terminals and bank networks talk to each other, and because of the use of block
ciphers to generate and protect customer PINs (which I discuss in Chapter 10).
Triple DES is a perfectly serviceable block cipher for such purposes for the
foreseeable future.

Another way of preventing keysearch (and making power analysis harder) is
whitening. In addition to the 56-bit key, say k0, we choose two 64-bit whitening
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keys k1 and k2, xor’ing the first with the plaintext before encryption and the
second with the output of the encryption to get the ciphertext afterwards. This
composite cipher is known as DESX, and is used in the Win2K encrypting file
system. Formally,

DESX(k0, k1, k2; M) = DES(k0; M ⊕ k1) ⊕ k2

It can be shown that, on reasonable assumptions, DESX has the properties
you’d expect; it inherits the differential strength of DES but its resistance to
keysearch is increased by the amount of the whitening [717]. Whitened block
ciphers are used in some applications.

5.5 Modes of Operation

In practice, how you use an encryption algorithm is often more important
than which one you pick. An important factor is the ‘mode of operation’, which
specifies how a block cipher with a fixed block size (8 bytes for DES, 16 for
AES) can be extended to process messages of arbitrary length.

There are several standard modes of operation for using a block cipher on
multiple blocks [944]. Understanding them, and choosing the right one for the
job, is an important factor in using a block cipher securely.

5.5.1 Electronic Code Book
In electronic code book (ECB) we just encrypt each succeeding block of
plaintext with our block cipher to get ciphertext, as with the Playfair cipher
I gave above as an example. This is adequate for many simple operations
such as challenge-response and some key management tasks; it’s also used
to encrypt PINs in cash machine systems. However, if we use it to encrypt
redundant data the patterns will show through, letting an opponent deduce
information about the plaintext. For example, if a word processing format has
lots of strings of nulls, then the ciphertext will have a lot of blocks whose value
is the encryption of null characters under the current key.

In one popular corporate email system from the late 1980’s, the encryption
used was DES ECB with the key derived from an eight character password. If
you looked at a ciphertext generated by this system, you saw that a certain block
was far more common than the others — the one corresponding to a plaintext
of nulls. This gave one of the simplest attacks on a fielded DES encryption
system: just encrypt a null block with each password in a dictionary and sort
the answers. You can now break at sight any ciphertext whose password was
one of those in your dictionary.

In addition, using ECB mode to encrypt messages of more than one block
length which have an authenticity requirement — such as bank payment
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messages — would be foolish, as messages could be subject to a cut and splice
attack along the block boundaries. For example, if a bank message said ‘Please
pay account number X the sum Y, and their reference number is Z’ then an
attacker might initiate a payment designed so that some of the digits of X
could be replaced with some of the digits of Z.

5.5.2 Cipher Block Chaining
Most commercial applications which encrypt more than one block use cipher
block chaining, or CBC, mode. In it, we exclusive-or the previous block of
ciphertext to the current block of plaintext before encryption (see Figure 5.14).

This mode is effective at disguising any patterns in the plaintext: the
encryption of each block depends on all the previous blocks. The input IV
is an initialization vector, a random number that performs the same function
as a seed in a stream cipher and ensures that stereotyped plaintext message
headers won’t leak information by encrypting to identical ciphertext blocks.

However, an opponent who knows some of the plaintext may be able to
cut and splice a message (or parts of several messages encrypted under the
same key), so the integrity protection is not total. In fact, if an error is inserted
into the ciphertext, it will affect only two blocks of plaintext on decryption,
so if there isn’t any integrity protection on the plaintext, an enemy can insert
two-block garbles of random data at locations of his choice.

5.5.3 Output Feedback
Output feedback (OFB) mode consists of repeatedly encrypting an initial value
and using this as a keystream in a stream cipher of the kind discussed above.
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Figure 5.14: Cipher Block Chaining (CBC) mode
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Writing IV for the initialization vector or seed, the i-th block of keystream will
be given by

Ki = {. . . {{IV}K}K . . . total of i times}
This is one standard way of turning a block cipher into a stream cipher.

The key K is expanded into a long stream of blocks Ki of keystream. Keystream
is typically combined with the blocks of a message Mi using exclusive-or to
give ciphertext Ci = Mi ⊕ Ki; this arrangement is sometimes called an additive
stream cipher as exclusive-or is just addition module 2 (and some old hand
systems used addition modulo 26).

All additive stream ciphers have an important vulnerability: they fail to
protect message integrity. I mentioned this in the context of the one-time
pad in section 5.2.2 above, but it’s important to realise that this doesn’t just
affect ‘perfectly secure’ systems but ‘real life’ stream ciphers too. Suppose, for
example, that a stream cipher were used to encipher fund transfer messages.
These messages are very highly structured; you might know, for example, that
bytes 37–42 contained the amount of money being transferred. You could then
carry out the following attack. You cause the data traffic from a local bank to
go via your computer, for example by a wiretap. You go into the bank and
send a modest sum (say $500) to an accomplice. The ciphertext Ci = Mi ⊕ Ki,
duly arrives in your machine. You know Mi for bytes 37–42, so you know
Ki and can easily construct a modified message which instructs the receiving
bank to pay not $500 but $500,000! This is an example of an attack in depth; it is
the price not just of the perfect secrecy we get from the one-time pad, but of
much more humble stream ciphers too.

5.5.4 Counter Encryption
One possible drawback of feedback modes of block cipher encryption is
latency: feedback modes are hard to parallelize. With CBC, a whole block of
the cipher must be computed between each block input and each block output;
with OFB, we can precompute keystream but storing it requires memory. This
can be inconvenient in very high speed applications, such as protecting traffic
on gigabit backbone links. There, as silicon is cheap, we would rather pipeline
our encryption chip, so that it encrypts a new block (or generates a new block
of keystream) in as few clock ticks as possible.

The simplest solution is often is to generate a keystream by just encrypting
a counter: Ki = {IV + i}K. As before, this is then added to the plaintext to get
ciphertext (so it’s also vulnerable to attacks in depth).

Another problem this mode solves when using a 64-bit block cipher such
as triple-DES on a very high speed link is cycle length. An n-bit block cipher
in OFB mode will typically have a cycle length of 2n/2 blocks, after which the
birthday theorem will see to it that the keystream starts to repeat. (Once we’ve
a little over 232 64-bit values, the odds are that two of them will match.) In
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CBC mode, too, the birthday theorem ensures that after about 2n/2 blocks, we
will start to see repeats. Counter mode encryption, however, has a guaranteed
cycle length of 2n rather than 2n/2.

5.5.5 Cipher Feedback
Cipher feedback, or CFB, mode is another kind of stream cipher. It was
designed to be self-synchronizing, in that even if we get a burst error and drop
a few bits, the system will recover synchronization after one block length. This
is achieved by using our block cipher to encrypt the last n bits of ciphertext,
and then adding one of the output bits to the next plaintext bit.

With decryption, the reverse operation is performed, with ciphertext feeding
in from the right in Figure 5.15. Thus even if we get a burst error and drop a
few bits, as soon as we’ve received enough ciphertext bits to fill up the shift
register, the system will resynchronize.

Cipher feedback is not much used any more. It was designed for use in
military HF radio links which are vulnerable to fading, in the days when
digital electronics were relatively expensive. Now that silicon is cheap, people
use dedicated link layer protocols for synchronization and error correction
rather than trying to combine them with the cryptography.

5.5.6 Message Authentication Code
The next official mode of operation of a block cipher is not used to encipher data,
but to protect its integrity and authenticity. This is the message authentication
code, or MAC. To compute a MAC on a message using a block cipher, we
encrypt it using CBC mode and throw away all the output ciphertext blocks
except the last one; this last block is the MAC. (The intermediate results are
kept secret in order to prevent splicing attacks.)
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Figure 5.15: Ciphertext feedback mode (CFB)
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This construction makes the MAC depend on all the plaintext blocks as
well as on the key. It is secure provided the message length is fixed; Mihir
Bellare, Joe Kilian and Philip Rogaway proved that any attack on a MAC
under these circumstances would give an attack on the underlying block
cipher [147].

If the message length is variable, you have to ensure that a MAC computed
on one string can’t be used as the IV for computing a MAC on a different
string, so that an opponent can’t cheat by getting a MAC on the composition of
the two strings. In order to fix this problem, NIST has standardised CMAC, in
which a variant of the key is xor-ed in before the last encryption [945]. (CMAC
is based on a proposal by Tetsu Iwata and Kaoru Kurosawa [649].)

There are other possible constructions of MACs: a common one is to use a
hash function with a key, which we’ll look at in more detail in section 5.6.2.

5.5.7 Composite Modes of Operation
In applications needing both integrity and privacy, the standard procedure
used to be to first calculate a MAC on the message using one key, and then CBC
encrypt it using a different key. (If the same key is used for both encryption
and authentication, then the security of the latter is no longer guaranteed;
cut-and-splice attacks are still possible.)

Recently two further modes of operation have been tackled by NIST that
combine encryption and authentication. The first is CCM, which combines
counter-mode encryption with CBC-MAC authentication. The danger to watch
for here is that the counter values used in encryption must not coincide with the
initialisation vector used in the MAC; the standard requires that the formatting
function prevent this [946].

The second combined mode is Galois Counter Mode (GCM), which has just
been approved at the time of writing (2007). This interesting and innovative
mode is designed to be parallelisable so that it can give high throughput
on fast data links with low cost and low latency. As the implementation is
moderately complex, and the algorithm was approved as this book was in
its final edit, I don’t include the details here, but refer you instead to the
official specification [947]. The telegraphic summary is that the encryption is
performed in a variant of counter mode; the resulting ciphertexts are also
multiplied together with key material and message length information in a
Galois field of 2128 elements to get an authenticator tag. The output is thus
a ciphertext of the same length as the plaintext, plus a tag of typically 128
bits. The tag computation uses a universal hash function which comes from
the theory of unconditionally-secure authentication codes; I’ll describe this in
Chapter 13, ‘Nuclear Command and Control’.
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Both CCM, and old-fashioned CBC plus CBC MAC, need a completely new
MAC to be computed on the whole message if any bit of it is changed. How-
ever, the GCM mode of operation has an interesting incremental property: a
new authenticator and ciphertext can be calculated with an amount of effort
proportional to the number of bits that were changed. GCM is an invention of
David McGrew and John Viega of Cisco; their goal was to create an authenti-
cated encryption mode that is highly parallelisable for use in high-performance
network hardware and that only uses one block cipher operation per block of
plaintext, unlike CCM or the old-fashioned CBC plus CBC-MAC [862]. Now
that GCM has been adopted as a standard, we might expect it to become the
most common mode of operation for the encryption of bulk content.

5.6 Hash Functions

In section 5.4.3.1 I showed how the Luby-Rackoff theorem enables us to
construct a block cipher from a hash function. It’s also possible to construct
a hash function from a block cipher. (In fact, we can also construct hash
functions and block ciphers from stream ciphers — so, subject to some caveats
I’ll discuss in the next section, given any one of these three primitives we can
construct the other two.)

The trick is to feed the message blocks one at a time to the key input of
our block cipher, and use it to update a hash value (which starts off at say
H0 = 0). In order to make this operation non-invertible, we add feedforward:
the (i − 1)st hash value is exclusive or’ed with the output of round i. This is
our final mode of operation of a block cipher (Figure 5.16).
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Figure 5.16: Feedforward mode (hash function)
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5.6.1 Extra Requirements on the Underlying Cipher

The birthday effect makes another appearance here, in that if a hash function h
is built using an n bit block cipher, it is possible to find two messages M1 �= M2

with h(M1) = h(M2) with about 2n/2 effort (hash slightly more than that many
messages Mi and look for a match). So a 64 bit block cipher is not adequate, as
the cost of forging a message would be of the order of 232 messages, which is
quite practical. A 128-bit cipher such as AES may be just about adequate, and
in fact the AACS content protection mechanism used in the next generation of
DVDs uses ‘AES-H’, the hash function derived from AES in this way.

The birthday limit is not the only way in which the hash function mode of
operation is more demanding on the underlying block cipher than a mode such
as CBC designed for confidentiality. A good illustration comes from a cipher
called Treyfer which was designed to encrypt data using as little memory as
possible in the 8051 microcontrollers commonly found in consumer electronics
and domestic appliances [1371]. (It takes only 30 bytes of ROM.)

Treyfer ‘scavenges’ its S-box by using 256 bytes from the ROM, which may
be code, or even — to make commercial cloning riskier — contain a copyright
message. At each round, it acts on eight bytes of text with eight bytes of key
by adding a byte of text to a byte of key, passing it through the S-box, adding
it to the next byte and then rotating the result by one bit (see Figure 5.17).
This rotation deals with some of the problems that might arise if the S-box has
uneven randomness across its bitplanes (for example, if it contains ascii text
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Figure 5.17: The basic component of the Treyfer block cipher
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such as a copyright message). Finally, the algorithm makes up for its simple
round structure and probably less than ideal S-box by having a large number
of rounds (32).

No attacks are known on Treyfer which prevent its use for confidentiality
and for computing MACs. However, the algorithm does have a weakness that
prevents its use in hash functions. It suffers from a fixed-point attack. Given
any input, there is a fair chance we can find a key which will leave the input
unchanged. We just have to look to see, for each byte of input, whether the
S-box assumes the output which, when added to the byte on the right, has
the effect of rotating it one bit to the right. If such outputs exist for each
of the input bytes, then it’s easy to choose key values which will leave the data
unchanged after one round, and thus after 32. The probability that we can do
this depends on the S-box3. This means that we can easily find collisions if
Treyfer is used as a hash function. In effect, hash functions have to be based
on block ciphers which withstand chosen-key attacks.

5.6.2 Common Hash Functions and Applications
Algorithms similar to Treyfer have been used in hash functions in key manage-
ment protocols in some pay-TV systems, but typically they have a modification
to prevent fixed-point attacks, such as a procedure to add in the round number
at each round, or to mix up the bits of the key in some way (a key scheduling
algorithm).

The most commonly used hash functions are all cryptographically suspect.
They are based on variants of a block cipher with a 512 bit key and a block size
of either 128 or 160 bits:

MD4 has three rounds and a 128 bit hash value, and a collision was
found for it in 1998 [394];

MD5 has four rounds and a 128 bit hash value, and a collision was found
for it in 2004 [1315, 1317];

the US Secure Hash Standard has five rounds and a 160 bit hash value,
and it was shown in 2005 that a collision can be found with a computa-
tional effort of 269 steps rather than the 280 that one would hope given its
block size [1316].

The block ciphers underlying these hash functions are similar: their round
function is a complicated mixture of the register operations available on 32 bit
processors [1125].

3Curiously, an S-box which is a permutation is always vulnerable, while a randomly selected
one isn’t quite so bad. In many cipher designs, S-boxes which are permutations are essential or
at least desirable. Treyfer is an exception.
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MD5 was broken by Xiaoyun Wang and her colleagues in 2004 [1315, 1317];
collisions can now be found easily, even between strings containing meaningful
text and adhering to message formats such as those used for digital certificates.
Wang seriously dented SHA the following year, providing an algorithm that
will find collisions in only 269 steps [1316]; and at the Crypto 2007 conference,
the view was that finding a collision should cost about 260. Volunteers were
being recruited for the task. So it appears that soon a collision will be found
and SHA-1 will be declared ‘broken’.

At the time of writing, the US National Institute of Standards and Technology
(NIST) recommends that people use extended block-size versions of SHA, such
as SHA-256 or SHA-512. The draft FIPS 180-3 allows, though discourages, the
original SHA; it specifies SHA-256 and SHA-512, and also supports 224-bit and
384-bit hashes derived from SHA-256 and SHA-512 respectively by changing
the initial values and truncating the output. The NSA specifies the use of SHA-
256 or SHA-382 along with AES in its Suite B of cryptographic algorithms for
defense use. NIST is also organising a competition to find a replacement hash
function family [949].

Whether a collision-search algorithm that requires months of work on
hundreds of machines (or a few days on a large botnet) will put any given
application at risk can be a complex question. If bank systems would actually
take a message composed by a customer saying ‘Pay X the sum Y’, hash it and
sign it, then a weak hash function could indeed be exploited: a bad man could
find two messages ‘Pay X the sum Y’ and ‘Pay X the sum Z’ that hashed to
the same value, get one signed, and swap it for the other. But bank systems
don’t work like that. They typically use MACs rather than digital signatures
on actual transactions, relying on signatures only in public-key certificates
that bootstrap key-management protocols; and as the public-key certificates
are generated by trusted CAs using fairly constrained algorithms, there isn’t
an opportunity to insert one text of a colliding pair. Instead you’d have to
find a collision with an externally-given target value, which is a much harder
cryptanalytic task.

Hash functions have many uses. One of them is to compute MACs. A naive
method would be to simply hash the message with a key: MACk(M) = h(k, M).
However the accepted way of doing this, called HMAC, uses an extra step
in which the result of this computation is hashed again. The two hashing
operations are done using variants of the key, derived by exclusive-or’ing
them with two different constants. Thus HMACk(M) = h(k ⊕ A, h(k ⊕ B, M)). A
is constructed by repeating the byte 0x36 as often as necessary, and B similarly
from the byte 0x5C. Given a hash function that may be on the weak side, this
is believed to make exploitable collisions harder to find [741]. HMAC is now
FIPS 198, being replaced by FIPS 198-1.
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Another use of hash functions is to make commitments that are to be
revealed later. For example, I might wish to timestamp a digital document
in order to establish intellectual priority, but not reveal the contents yet. In
that case, I can submit a hash of the document to a commercial timestamping
service [572]. Later, when I reveal the document, the fact that its hash was
timestamped at a given time establishes that I had written it by then. Again,
an algorithm that generates colliding pairs doesn’t break this, as you have to
have the pair to hand when you do the timestamp. The moral, I suppose, is
that engineers should be clear about whether a given application needs a hash
function that’s strongly collision-resistant.

But even though there may be few applications where the ability to find
collisions could enable a bad guy to steal real money today, the existence of a
potential vulnerability can still undermine a system’s value. In 2005, a motorist
accused of speeding in Sydney, Australia, was acquitted after the New South
Wales Roads and Traffic Authority failed to find an expert to testify that MD5
was secure. The judge was ‘‘not satisfied beyond reasonable doubt that the
photograph [had] not been altered since it was taken’’ and acquitted the
motorist; this ruling was upheld on appeal the following year [964]. So even if
a vulnerability doesn’t present an engineering threat, it can still present a very
real certificational threat.

Finally, before we go on to discuss asymmetric cryptography, there are
two particular uses of hash functions which need mention: key updating and
autokeying.

Key updating means that two or more principals who share a key pass it
through a one-way hash function at agreed times: Ki = h(Ki−1). The point is
that if an attacker compromises one of their systems and steals the key, he
only gets the current key and is unable to decrypt back traffic. The chain of
compromise is broken by the hash function’s one-wayness. This property is
also known as backward security.

Autokeying means that two or more principals who share a key hash it
at agreed times with the messages they have exchanged since the last key
change: K+1i = h(Ki, Mi1, Mi2, . . .). The point is that if an attacker compromises
one of their systems and steals the key, then as soon as they exchange a
message which he doesn’t observe or guess, security will be recovered in
that he can no longer decrypt their traffic. Again, the chain of compromise is
broken. This property is known as forward security. It is used, for example, in
EFT payment terminals in Australia [143, 145]. The use of asymmetric crypto
allows a slightly stronger form of forward security, namely that as soon as
a compromised terminal exchanges a message with an uncompromised one
which the opponent doesn’t control, then security can be recovered even if the
message is in plain sight. I’ll describe how this trick works next.
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5.7 Asymmetric Crypto Primitives

The commonly used building blocks in asymmetric cryptography, that is public
key encryption and digital signature, are based on number theory. I’ll give only
a brief overview here, and look in more detail at some of the mechanisms used
in Part II where I discuss applications. (If you find the description assumes too
much mathematics, I’d suggest you skip the following two sections and read
up the material from a cryptography textbook.)

The technique is to make the security of the cipher depend on the difficulty of
solving a certain mathematical problem. The two problems which are used in
almost all fielded systems are factorization (used in most commercial systems)
and discrete logarithm (used in many government systems).

5.7.1 Cryptography Based on Factoring
The prime numbers are the positive whole numbers with no proper divisors; that
is, the only numbers that divide a prime number are 1 and the number itself. By
definition, 1 is not prime; so the primes are {2, 3, 5, 7, 11, . . .}. The fundamental
theorem of arithmetic states that each natural number greater than 1 factors into
prime numbers in a way that is unique up to the order of the factors. It is
easy to find prime numbers and multiply them together to give a composite
number, but much harder to resolve a composite number into its factors. The
largest composite product of two large random primes to have been factorized
to date was RSA-200, a 663-bit number (200 decimal digits), factored in 2005.
This factorization was done on a number of PCs and took the equivalent of 75
years’ work on a single 2.2GHz machine. It is possible for factoring to be done
surreptitiously, perhaps using a botnet; in 2001, when the state of the art was
factoring 512-bit numbers, such a challenge was set in Simon Singh’s ‘Code
Book’ and solved by five Swedish students using several hundred computers
to which they had access [24]. By 2007, 512-bit factorization had entered into
mainstream commerce. From 2003, Intuit had protected its Quicken files with
strong encryption, but left a back door based on a 512-bit RSA key so that they
could offer a key recovery service. Elcomsoft appears to have factored this key
and now offers a competing recovery product.

It is believed that factoring an RSA modulus of 1024 bits would require a
special-purpose machine costing in the range of $10–50m and that would take
a year for each factorization [781]; but I’ve heard of no-one seriously planning
to build such a machine. Many physicists hope that a quantum computer could
be built that would make it easy to factor even large numbers. So, given that
Moore’s law is slowing down and that quantum computers haven’t arrived
yet, we can summarise the state of the art as follows. 1024-bit products of
two random primes are hard to factor and cryptographic systems that rely on
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them are at no immediate risk from low-to-medium budget attackers; NIST
expects them to be secure until 2010, while an extrapolation of the history of
factoring records suggests the first factorization will be published in 2018. So
risk-averse organisations that want keys to remain secure for many years are
already using 2048-bit numbers.

The algorithm commonly used to do public-key encryption and digital
signatures based on factoring is RSA, named after its inventors Ron Rivest,
Adi Shamir and Len Adleman. It uses Fermat’s (little) theorem, which states that
for all primes p not dividing a, ap−1 ≡ 1 (mod p) (proof: take the set {1, 2, . . .,
p − 1} and multiply each of them modulo p by a, then cancel out (p − 1)! each
side). Euler’s function φ(n) is the number of positive integers less than n with
which it has no divisor in common; so if n is the product of two primes pq then
φ(n) = (p − 1)(q − 1) (the proof is similar).

The encryption key is a modulus N which is hard to factor (take N = pq for
two large randomly chosen primes p and q, say of 1024 bits each) plus a public
exponent e that has no common factors with either p − 1 or q − 1. The private
key is the factors p and q, which are kept secret. Where M is the message and
C is the ciphertext, encryption is defined by

C ≡ Me (mod N)

Decryption is the reverse operation:

M ≡ e
√

C (mod N)

Whoever knows the private key — the factors p and q of N — can easily cal-
culate e

√
C (mod N). As φ(N) = (p − 1)(q − 1) and e has no common factors with

φ(N), the key’s owner can find a number d such that de ≡ 1 (mod φ(N)) — she
finds the value of d separately modulo p − 1 and q − 1, and combines the
answers. e

√
C (mod N) is now computed as Cd (mod N), and decryption works

because of Fermat’s theorem:

Cd ≡ {Me}d ≡ Med ≡ M1+kφ(N) ≡ M.Mkφ(N) ≡ Mx1 ≡ M (mod N)

Similarly, the owner of a private key can operate on a message with this to
produce a signature

Sigd(M) ≡ Md (mod N)

and this signature can be verified by raising it to the power e mod N (thus,
using e and N as the public signature verification key) and checking that the
message M is recovered:

M ≡ (Sigd(M))e (mod N)

Neither RSA encryption nor signature is generally safe to use on its own.
The reason is that, as encryption is an algebraic process, it preserves certain
algebraic properties. For example, if we have a relation such as M1M2 = M3
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that holds among plaintexts, then the same relationship will hold among
ciphertexts C1C2 = C3 and signatures Sig1Sig2 = Sig3. This property is known
as a multiplicative homomorphism; a homomorphism is a function that preserves
some mathematical structure. The homomorphic nature of raw RSA means that
it doesn’t meet the random oracle model definitions of public key encryption
or signature.

Another problem with public-key encryption is that if the plaintexts are
drawn from a small set, such as ‘attack’ or ‘retreat’, and the encryption process
is known to the opponent, then he can precompute possible ciphertexts and
recognise them when they appear. Specific algorithms also have specific
vulnerabilities: with RSA, it’s dangerous to use a small exponent e to encrypt
the same message to multiple recipients, as this can lead to an algebraic
attack. To stop the guessing attack, the low-exponent attack and attacks
based on homomorphism, it’s sensible to add in some randomness, and some
redundancy, into a plaintext block before encrypting it. However, there are
good ways and bad ways of doing this.

In fact, crypto theoreticians have wrestled for decades to analyze all the
things that can go wrong with asymmetric cryptography, and to find ways to
tidy it up. Shafi Goldwasser and Silvio Micali came up with formal models of
probabilistic encryption in which we add randomness to the encryption process,
and semantic security, which means that an attacker cannot get any information
at all about a plaintext M that was encrypted to a ciphertext C, even if he
is allowed to request the decryption of any other ciphertext C′ not equal
to C [536]. There are a number of constructions that give provable semantic
security, but they tend to be too ungainly for practical use.

The common real-world solution is optimal asymmetric encryption padding
(OAEP), where we concatenate the message M with a random nonce N, and
use a hash function h to combine them:

C1 = M ⊕ h(N)

C2 = N ⊕ h(C1)

In effect, this is a two-round Feistel cipher that uses h as its round function.
The result, the combination C1, C2, is then encrypted with RSA and sent. The
recipient then computes N as C2 ⊕ h(C1) and recovers M as C1 ⊕ h(N) [148].
(This construction came with a security proof, in which a mistake was sub-
sequently found [1167, 234], sparking a vigorous debate on the value of
mathematical proofs in security engineering [724].) RSA Data Security, which
for years licensed the RSA algorithm, developed a number of public-key
cryptography standards; PKCS #1 describes OAEP [672].

With signatures, things are slightly simpler. In general, it’s often enough
to just hash the message before applying the private key: Sigd = [h(M)]d

(mod N); PKCS #7 describes simple mechanisms for signing a message
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digest [680]. However, in some applications one might wish to include further
data in the signature block, such as a timestamp, or some randomness in order
to make side-channel attacks harder.

Many of the things that have gone wrong with real implementations have
to do with error handling. Some errors can affect cryptographic mechanisms
directly. The most spectacular example was when Daniel Bleichenbacher found
a way to break the RSA implementation in SSL v 3.0 by sending suitably chosen
ciphertexts to the victim and observing any resulting error messages. If he
can learn from the target whether a given c, when decrypted as cd (mod n),
corresponds to a PKCS #1 message, then he can use this to decrypt or sign
messages [189]. Other attacks have depended on measuring the precise time
taken to decrypt; I’ll discuss these in the chapter on emission security. Yet
others have involved stack overflows, whether by sending the attack code in
as keys, or as padding in poorly-implemented standards. Don’t assume that
the only attacks on your crypto code will be doing cryptanalysis.

5.7.2 Cryptography Based on Discrete Logarithms
While RSA is used in most web browsers in the SSL protocol, and in the SSH
protocol commonly used for remote login to computer systems, there are other
products, and many government systems, which base public key operations on
discrete logarithms. These come in a number of flavors, some using ‘normal’
arithmetic while others use mathematical structures called elliptic curves. I’ll
explain the normal case. The elliptic variants use essentially the same idea but
the implementation is more complex.

A primitive root modulo p is a number whose powers generate all the nonzero
numbers mod p; for example, when working modulo 7 we find that 52 = 25
which reduces to 4 (modulo 7), then we can compute 53 as 52 × 5 or 4 × 5
which is 20, which reduces to 6 (modulo 7), and so on, as in Figure 5.18:

51 = 5 (mod 7)
52 = 25 ≡ 4 (mod 7)
53 ≡ 4 x 5 ≡ 6 (mod 7)
54 ≡ 6 x 5 ≡ 2 (mod 7)
55 ≡ 2 x 5 ≡ 3 (mod 7)
56 ≡ 3 x 5 ≡ 1 (mod 7)

Figure 5.18: Example of discrete logarithm calculations

Thus 5 is a primitive root modulo 7. This means that given any y, we can
always solve the equation y = 5x (mod 7); x is then called the discrete logarithm
of y modulo 7. Small examples like this can be solved by inspection, but for a
large random prime number p, we do not know how to do this computation.
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So the mapping f : x → gx (mod p) is a one-way function, with the additional
properties that f (x + y) = f (x)f (y) and f (nx) = f (x)n. In other words, it is a
one-way homomorphism. As such, it can be used to construct digital signature
and public key encryption algorithms.

5.7.2.1 Public Key Encryption — Diffie Hellman and ElGamal

To understand how discrete logarithms can be used to build a public-key
encryption algorithm, bear in mind that we want a cryptosystem which does
not need the users to start off with a shared secret key. Consider the following
‘classical’ scenario.

Imagine that Anthony wants to send a secret to Brutus, and the only
communications channel available is an untrustworthy courier (say, a slave
belonging to Caesar). Anthony can take the message, put it in a box, padlock it,
and get the courier to take it to Brutus. Brutus could then put his own padlock
on it too, and have it taken back to Anthony. He in turn would remove his
padlock, and have it taken back to Brutus, who would now at last open it.

Exactly the same can be done using a suitable encryption function that
commutes, that is, has the property that {{M} KA} KB = {{M} KB} KA. Alice
can take the message M and encrypt it with her key KA to get {M} KA which
she sends to Bob. Bob encrypts it again with his key KB getting {{M} KA} KB.
But the commutativity property means that this is just {{M} KB} KA, so Alice
can decrypt it using her key KA getting {M} KB. She sends this to Bob and he
can decrypt it with KB, finally recovering the message M. The keys KA and KB
might be long-term keys if this mechanism were to be used as a conventional
public-key encryption system, or they might be transient keys if the goal were
to establish a key with forward secrecy.

How can a suitable commutative encryption be implemented? The one-time
pad does commute, but is not suitable here. Suppose Alice chooses a random
key xA and sends Bob M ⊕ xA while Bob returns M ⊕ xB and Alice finally
sends him M ⊕ xA ⊕ xB, then an attacker can simply exclusive-or these three
messages together; as X ⊕ X = 0 for all X, the two values of xA and xB both
cancel our leaving as an answer the plaintext M.

The discrete logarithm problem comes to the rescue. If the discrete log
problem based on a primitive root modulo p is hard, then we can use discrete
exponentiation as our encryption function. For example, Alice encodes her
message as the primitive root g, chooses a random number xA, calculates
gxA modulo p and sends it, together with p, to Bob. Bob likewise chooses
a random number xB and forms gxAxB modulo p, which he passes back to
Alice. Alice can now remove her exponentiation: using Fermat’s theorem, she
calculates gxB = (gxAxB)(p−xA) (mod p) and sends it to Bob. Bob can now remove
his exponentiation, too, and so finally gets hold of g. The security of this scheme
depends on the difficulty of the discrete logarithm problem. In practice, it is
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tricky to encode a message to be a primitive root; but there is a much simpler
means of achieving the same effect. The first public key encryption scheme
to be published, by Whitfield Diffie and Martin Hellman in 1976, has a fixed
primitive root g and uses gxAxB modulo p as the key to a shared-key encryption
system. The values xA and xB can be the private keys of the two parties.

Let’s see how this might provide a public-key encryption system. The prime
p and generator g are common to all users. Alice chooses a secret random
number xA, calculates yA = gxA and publishes it opposite her name in the
company phone book. Bob does the same, choosing a random number xB and
publishing yB = gxB. In order to communicate with Bob, Alice fetches yB from
the phone book, forms yBxA which is just gxAxB, and uses this to encrypt the
message to Bob. On receiving it, Bob looks up Alice’s public key yA and forms
yAxB which is also equal to gxAxB, so he can decrypt her message.

Slightly more work is needed to provide a full solution. Some care is needed
when choosing the parameters p and g; and there are several other details
which depend on whether we want properties such as forward security.
Variants on the Diffie-Hellman theme include the US government key exchange
algorithm (KEA) [939], used in network security products such as the Fortezza
card, and the so-called Royal Holloway protocol, which is used by the UK
government [76].

Of course, one of the big problems with public-key systems is how to be
sure that you’ve got a genuine copy of the phone book, and that the entry
you’re interested in isn’t out of date. I’ll discuss that in section 5.7.5.

5.7.2.2 Key Establishment

Mechanisms for providing forward security in such protocols are of indepen-
dent interest, As before, let the prime p and generator g be common to all
users. Alice chooses a random number RA, calculates gRA and sends it to Bob;
Bob does the same, choosing a random number RB and sending gRB to Alice;
they then both form gRARB , which they use as a session key (Figure 5.19).

A → B : gRA (mod p)
B → A : gRB (mod p)
A → B : {M}gRARB

Figure 5.19: The Diffie-Hellman key exchange protocol

Alice and Bob can now use the session key gRARB to encrypt a conversation.
They have managed to create a shared secret ‘out of nothing’. Even if an
opponent had obtained full access to both their machines before this protocol
was started, and thus knew all their stored private keys, then provided some
basic conditions were met (e.g., that their random number generators were



176 Chapter 5 ■ Cryptography

not predictable) the opponent could still not eavesdrop on their traffic. This
is the strong version of the forward security property to which I referred in
section 5.6.2. The opponent can’t work forward from knowledge of previous
keys which he might have obtained. Provided that Alice and Bob both destroy
the shared secret after use, they will also have backward security: an opponent
who gets access to their equipment subsequently cannot work backward to
break their old traffic.

But this protocol has a small problem: although Alice and Bob end up with
a session key, neither of them has any idea who they share it with.

Suppose that in our padlock protocol Caesar had just ordered his slave
to bring the box to him instead, and placed his own padlock on it next to
Anthony’s. The slave takes the box back to Anthony, who removes his padlock,
and brings the box back to Caesar who opens it. Caesar can even run two
instances of the protocol, pretending to Anthony that he’s Brutus and to Brutus
that he’s Anthony. One fix is for Anthony and Brutus to apply their seals to
their locks.

With the vanilla Diffie-Hellman protocol, the same idea leads to a mid-
dleperson attack. Charlie intercepts Alice’s message to Bob and replies to it; at
the same time, he initiates a key exchange with Bob, pretending to be Alice.
He ends up with a key gRARC which he shares with Alice, and another key gRBRC

which he shares with Bob. So long as he continues to sit in the middle of the
network and translate the messages between them, they may have a hard time
detecting that their communications are compromised. The usual solution is
to authenticate transient keys, and there are various possibilities.

In one secure telephone product, the two principals would read out an eight
digit hash of the key they had generated and check that they had the same
value before starting to discuss classified matters. A more general solution is
for Alice and Bob to sign the messages that they send to each other.

A few other details have to be got right, such as a suitable choice of the
values p and g. There’s some non-trivial mathematics behind this, which is best
left to specialists. There are also many things that can go wrong in implemen-
tations — examples being software that will generate or accept very weak keys
and thus give only the appearance of protection; programs that leak the key by
the amount of time they take to decrypt; and software vulnerabilities leading
to stack overflows and other nasties. Nonspecialists implementing public-key
cryptography should consult up-to-date standards documents and/or use
properly accredited toolkits.

5.7.2.3 Digital Signature

Suppose that the base p and the generator g are public values chosen in some
suitable way, and that each user who wishes to sign messages has a private
signing key X and a public signature verification key Y = gX. An ElGamal
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signature scheme works as follows. Choose a message key k at random, and
form r = gk (mod p). Now form the signature s using a linear equation in k, r,
the message M and the private key X. There are a number of equations that
will do; the particular one that happens to be used in ElGamal signatures is

rX + sk = M

So s is computed as s = (M − rX)/k; this is done modulo φ(p). When both
sides are passed through our one-way homomorphism f (x) = gx mod p we get:

grXgsk ≡ gM

or

Yrrs ≡ gM

An ElGamal signature on the message M consists of the values r and s, and
the recipient can verify it using the above equation.

A few more details need to be fixed up to get a functional digital signature
scheme. As before, bad choices of p and g can weaken the algorithm. We will
also want to hash the message M using a hash function so that we can sign
messages of arbitrary length, and so that an opponent can’t use the algorithm’s
algebraic structure to forge signatures on messages that were never signed.
Having attended to these details and applied one or two optimisations, we get
the Digital Signature Algorithm (DSA) which is a US standard and widely used
in government applications.

DSA (also known as DSS, for Digital Signature Standard) assumes a prime
p of typically 1024 bits, a prime q of 160 bits dividing (p − 1), an element g of
order q in the integers modulo p, a secret signing key x and a public verification
key y = gx. The signature on a message M, Sigx(M), is (r, s) where

r ≡ (gk (mod p)) (mod q)

s ≡ (h(M) − xr)/k (mod q)

The hash function used here is SHA1.
DSA is the classic example of a randomized digital signature scheme without

message recovery. The standard has changed somewhat with faster computers,
as variants of the algorithm used to factor large numbers can also be used to
compute discrete logarithms modulo bases of similar size4. Initially the prime
p could be in the range 512–1024 bits, but this was changed to 1023–1024
bits in 2001 [941]; the proposed third-generation standard will allow primes
p in the range 1024–3072 bits and q in the range 160–256 bits1 [942]. Further
tweaks to the standard are also foreseeable after a new hash function standard
is adopted.

4Discrete log efforts lag slightly behind, with a record set in 2006 of 440 bits.
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5.7.3 Special Purpose Primitives
Researchers have discovered a large number of public-key and signature
primitives with special properties. Two that have so far appeared in real
products are threshold cryptography and blind signatures.

Threshold crypto is a mechanism whereby a signing key, or a decryption key,
can be split up among n principals so that any k out of n can sign a message (or
decrypt). For k = n the construction is easy. With RSA, for example, you can
split up the private key d as d = d1 + d2 + . . . + dn. For k < n it’s slightly more
complex (but not much — you use the Lagrange interpolation formula) [382].
Threshold signatures are used in systems where a number of servers process
transactions independently and vote independently on the outcome; they
could also be used to implement business rules such as ‘a check may be signed
by any two of the seven directors’.

Blind signatures are a way of making a signature on a message without
knowing what the message is. For example, if we are using RSA, I can take a
random number R, form ReM (mod n), and give it to the signer who computes
(ReM)d = R.Md (mod n). When he gives this back to me, I can divide out R
to get the signature Md. Now you might ask why on earth someone would
want to sign a document without knowing its contents, but there are indeed
applications.

The first was in digital cash; a bank might want to be able to issue anonymous
payment tokens to customers, and this has been done by getting it to sign
‘digital coins’ without knowing their serial numbers. In such a system, the
bank might agree to honour for $10 any string M with a unique serial number
and a specified form of redundancy, bearing a signature that verified as correct
using the public key (e, n). The blind signature protocol shows how a customer
can get a bank to sign a coin without the banker knowing its serial number. The
effect is that the digital cash can be anonymous for the spender. (There are a few
technical details that need to be sorted out, such as how you detect people who
spend the same coin twice; but these are fixable.) Blind signatures and digital
cash were invented by Chaum [285], along with much other supporting digital
privacy technology which I’ll discuss later [284]. They were used briefly in pilot
projects for road tolls in the Netherlands and for electronic purses in Brussels,
but failed to take off on a broader scale because of patent issues and because
neither banks nor governments really want payments to be anonymous: the
anti-money-laundering regulations nowadays restrict anonymous payment
services to rather small amounts. Anonymous digital credentials are now
talked about, for example, in the context of ‘identity management’: the TPM
chip on your PC motherboard might prove something about you (such as your
age) without actually revealing your name.

Researchers continue to suggest new applications for specialist public key
mechanisms. A popular candidate is in online elections, which require a
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particular mixture of anonymity and accountability. Voters want to be sure
that their votes have been counted, but it’s also desirable that they should
not be able to prove which way they voted to anybody else; if they can, then
vote-buying and intimidation become easier.

5.7.4 Elliptic Curve Cryptography
Finally, discrete logarithms and their analogues exist in many other mathe-
matical structures; thus for example elliptic curve cryptography uses discrete
logarithms on an elliptic curve — a curve given by an equation like y2 =
x3 + ax + b. These curves have the property that you can define an addition
operation on them and use it for cryptography; the algebra gets a bit complex
and a general book like this isn’t the place to set it out. However, elliptic curve
cryptosystems are interesting for two reasons.

First, they give versions of the familiar primitives such as Diffie-Hellmann
key exchange and the Digital Signature Algorithm that use less computation,
and also have slightly shorter variables; both can be welcome in constrained
environments such as smartcards and embedded processors. Elliptic curve
cryptography is used, for example, in the rights-management mechanisms of
Windows Media Player, and has been adopted as a standard by the NSA for
use in defense systems.

Second, some elliptic curves have a bilinear pairing which Dan Boneh and
Matt Franklin used to construct cryptosystems where your public key is your
name [207]. Recall that in RSA and Diffie-Hellmann, the user chose his private
key and then computed a corresponding public key. In a so-called identity-
based cryptosystem, you choose your identity then go to a central authority that
issues you with a private key corresponding to that identity. There is a global
public key, with which anyone can encrypt a message to your identity; you
can decrypt this using your private key. Earlier, Adi Shamir had discovered
identity-based signature schemes that allow you to sign messages using a private
key so that anyone can verify the signature against your name [1147]. In both
cases, your private key is computed by the central authority using a system-
wide private key known only to itself. Identity-based primitives could have
interesting implications for specialist systems, but in the context of ordinary
public-key and signature systems they achieve much the same result as the
certification of public keys, which I’ll discuss next.

5.7.5 Certification
Now that we can do public-key encryption and digital signature, we need
some mechanism to bind users to keys. The approach proposed by Diffie and
Hellman when they invented digital signatures was to have a directory of the
public keys of a system’s authorized users, like a phone book. A more common
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solution, due to Loren Kohnfelder, is for a certification authority (CA) to sign the
users’ public encryption and/or signature verification keys giving certificates
that contain the user’s name, attributed such as authorizations, and public
keys. The CA might be run by the local system administrator; or it might be a
third party service such as Verisign whose business is to sign public keys after
doing some due diligence about whether they belong to the principals named
in them.

A certificate might be described symbolically as

CA = SigKS (TS, L, A, KA, VA) (5.1)

where (using the same notation as with Kerberos) TS is the certificate’s start-
ing date and time, L is the length of time for which it is valid, A is the user’s
name, KA is her public encryption key, and VA is her public signature verifi-
cation key. In this way, only the administrator’s public signature verification
key needs to be communicated to all principals in a trustworthy manner.

Certification is hard, for a whole lot of reasons. I’ll discuss different aspects
later — naming in Chapter 6, ‘Distributed Systems’, public-key infrastructures
in Chapter 21, ‘Network Attack and Defense’, and the policy aspects in Part III.
Here I’ll merely point out that the protocol design aspects are much harder
than they look.

One of the first proposed public-key protocols was due to Dorothy Denning
and Giovanni Sacco, who in 1982 proposed that two users, say Alice and Bob,
set up a shared key KAB as follows. When Alice first wants to communicate
with Bob, she goes to the certification authority and gets current copies of
public key certificates for herself and Bob. She then makes up a key packet
containing a timestamp TA, a session key KAB and a signature, which she
computes on these items using her private signing key. She then encrypts this
whole bundle under Bob’s public key and ships it off to him. Symbolically,

A → B : CA, CB, {TA, KAB, SigKA(TA, KAB)}KB (5.2)

In 1994, Martı́n Abadi and Roger Needham pointed out that this protocol
is fatally flawed [2]. Bob, on receiving this message, can masquerade as Alice
for as long as Alice’s timestamp TA remains valid! To see how, suppose that
Bob wants to masquerade as Alice to Charlie. He goes to Sam and gets a
fresh certificate CC for Charlie, and then strips off the outer encryption {. . .}KB

from message 3 in the above protocol. He now re-encrypts the signed key
packet TA, KAB, SigKA(TA, KAB) with Charlie’s public key — which he gets from
CC — and makes up a bogus message 3:

B → C : CA, CC, {TA, KAB, SigKA(TA, KAB)}KC (5.3)

It is quite alarming that such a simple protocol — essentially, a one line
program — should have such a serious flaw remain undetected for so long.
With a normal program of only a few lines of code, you might expect to find a
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bug in it by looking at it for a minute or two. In fact, public key protocols are
if anything harder to design than protocols that use shared-key encryption,
as they are prone to subtle and pernicious middleperson attacks. This further
motivates the use of formal methods to prove that protocols are correct.

Often, the participants’ names aren’t the most important things the authen-
tication mechanism has to establish. In the STU-III secure telephone used by
the US government and defense contractors, there is a protocol for establishing
transient keys with forward and backward security; to exclude middleperson
attacks, users have a crypto ignition key, a portable electronic device that they
plug into the phone to identify not just their names, but their security clearance
level. In general, textbooks tend to talk about identification as the main goal
of authentication and key management protocols; but in real life, it’s usually
authorization that matters. This is more complex, as it starts to introduce
assumptions about the application into the protocol design. (In fact, the NSA
security manual emphasises the importance of always knowing whether there
is an uncleared person in the room. The STU-III design is a natural way of
extending this to electronic communications.)

One serious weakness of relying on public-key certificates is the difficulty of
getting users to understand all their implications and manage them properly,
especially where they are not an exact reimplementation of a familiar manual
control system [357]. There are many other things that can go wrong with
certification at the level of systems engineering, which I’ll start to look at in
the next chapter.

5.7.6 The Strength of Asymmetric Cryptographic
Primitives
In order to provide the same level of protection as a symmetric block cipher,
asymmetric cryptographic primitives generally require at least twice the block
length. Elliptic curve systems appear to achieve this bound; a 128-bit elliptic
scheme could be about as hard to break as a 64-bit block cipher with a 64-bit
key; and the only public-key encryption schemes used in the NSA’s Suite B of
military algorithms are 256- and 384-bit elliptic curve systems. The commoner
schemes, based on factoring and discrete log, are less robust because there
are shortcut attack algorithms such as the number field sieve that exploit
the fact that some integers are smooth, that is, they have a large number of
small factors. When I wrote the first edition of this book in 2000, the number
field sieve had been used to attack keys up to 512 bits, a task comparable in
difficulty to keysearch on 56-bit DES keys; by the time I rewrote this chapter
for the second edition in 2007, 64-bit symmetric keys had been brute-forced,
and the 663-bit challenge number RSA-200 had been factored. The advance
in factoring has historically been due about equally to better hardware and
better algorithms. I wrote in 2000 that ‘The current consensus is that private
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keys for RSA and for standard discrete log systems should be at least 1024 bits
long, while 2048 bits gives some useful safety margin’; now in 2007, 1024-bit
RSA is widely believed to give about the same protection as 80-bit symmetric
keys, and designers are starting to move to 2048 bits for keys intended to last
many years. As I mentioned above, an extrapolation of recent factoring results
suggests that it might be a decade before we see a 1024-bit challenge factored —
although with Moore’s law starting to slow down, it might take much longer.
No-one really knows. (However I expect to see 768-bit RSA factored within a
few years.)

There has been much research into quantum computers — devices that per-
form a large number of computations simultaneously using superposed
quantum states. Peter Shor has shown that if a sufficiently large quantum
computer can be built, then both factoring and discrete logarithm compu-
tations will become easy [1165]. So far only very small quantum computers
can be built; factoring 15 is about the state of the art in 2007. Many people
are sceptical about whether the technology can be scaled up to threaten real
systems. But if it does, then asymmetric cryptography may have to change
radically. So it is fortunate that many of the things we currently do with asym-
metric mechanisms can also be done with symmetric ones; most authentication
protocols in use could be redesigned to use variants on Kerberos.

5.8 Summary

Many ciphers fail because they’re used improperly, so we need a clear model
of what a cipher does. The random oracle model provides a useful intuition:
we assume that each new value returned by the encryption engine is random
in the sense of being statistically independent of all the different outputs seen
before.

Block ciphers for symmetric key applications can be constructed by the
careful combination of substitutions and permutations; for asymmetric appli-
cations such as public key encryption and digital signature one uses number
theory. In both cases, there is quite a large body of mathematics. Other kinds
of ciphers — stream ciphers and hash functions — can be constructed from
block ciphers by using them in suitable modes of operation. These have
different error propagation, pattern concealment and integrity protection
properties.

The basic properties that the security engineer needs to understand are not
too difficult to grasp, though there are many subtle things that can go wrong.
In particular, it is surprisingly hard to build systems that are robust even
when components fail (or are encouraged to) and where the cryptographic
mechanisms are well integrated with other measures such as access control
and physical security. I’ll return to this repeatedly in later chapters.
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Research Problems

There are many active threads in cryptography research. Many of them are
where crypto meets a particular branch of mathematics (number theory,
algebraic geometry, complexity theory, combinatorics, graph theory, and
information theory). The empirical end of the business is concerned with
designing primitives for encryption, signature and composite operations,
and which perform reasonably well on available platforms. The two meet
in the study of subjects ranging from cryptanalysis, through the search for
primitives that combine provable security properties with decent performance,
to attacks on public key protocols. Research is more driven by the existing body
of knowledge than by applications, though there are exceptions: copyright
protection concerns and ‘Trusted Computing’ have been a stimulus in recent
years, as was the US government’s competition in the late 1990s to find an
Advanced Encryption Standard.

The best way to get a flavor of what’s going on is to read the last few years’
proceedings of research conferences such as Crypto, Eurocrypt, Asiacrypt,
CHES and Fast Software Encryption — all published by Springer in their
Lecture Notes on Computer Science series.

Further Reading

The classic papers by Whit Diffie and Martin Hellman [385] and by Ron
Rivest, Adi Shamir and Len Adleman [1078] are the closest to required reading
in this subject. The most popular introduction is Bruce Schneier’s Applied
Cryptography [1125] which covers a lot of ground at a level a non-mathematician
can understand, but is slightly dated. Alfred Menezes, Paul van Oorshot and
Scott Vanstone’s Handbook of Applied Cryptography [872] is the closest to a
standard reference book on the mathematical detail. For an appreciation of the
recent history of cryptanalysis, try Mark Stamp and Richard Low’s ‘Applied
Cryptanalysis’ [1214]: this has recent attacks on fielded ciphers such as PKZIP,
RC4, CMEA and MD5.

There are many more specialised references. The bible on differential crypt-
analysis is a book by its inventors Eli Biham and Adi Shamir [170], while a good
short tutorial on linear and differential cryptanalysis was written by Howard
Heys [602]. A textbook by Doug Stinson has another detailed explanation of
linear cryptanalysis [1226]; and the modern theory of block ciphers can be
traced through the papers in the Fast Software Encryption conference series. The
original book on modes of operation is by Carl Meyer and Steve Matyas [880].
Neal Koblitz has a good basic introduction to the mathematics behind public
key cryptography [723]; and the number field sieve is described in [780].
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There’s a shortage of good books on the random oracle model and on
theoretical cryptology in general: all the published texts I’ve seen are very
technical and heavy going. Probably the most regarded source is a book by
Oded Goldreich [535] but this is pitched at the postgraduate maths student. A
less thorough but more readable introduction to randomness and algorithms
is in [564]. Current research at the theoretical end of cryptology is found at the
FOCS, STOC, Crypto, Eurocrypt and Asiacrypt conferences.

Four of the simple block cipher modes of operation (ECB, CBC, OFB and
CFB) date back to FIPS-81; their specification was reissued, with CTR mode
added, in 2001 as NIST Special Publication 800-38A [944]. The compound
modes of operation are described in subsequent papers in that series.

The history of cryptology is fascinating, and so many old problems keep on
recurring in modern guises that the security engineer should be familiar with
it. The standard work is Kahn [676]; there are also compilations of historical
articles from Cryptologia [363, 361, 362] as well as several books on the history
of cryptology in World War 2 [296, 677, 836, 1336]. The NSA Museum at Fort
George Meade, Md., is also worth a visit, as is the one at Bletchley Park in
England.

Finally, no chapter that introduces public key encryption would be complete
without a mention that, under the name of ‘non-secret encryption,’ it was first
discovered by James Ellis in about 1969. However, as Ellis worked for GCHQ
(Britain’s Government Communications Headquarters, the equivalent of the
NSA) his work remained classified. The RSA algorithm was then invented by
Clifford Cocks, and also kept secret. This story is told in [427]. One effect of
the secrecy was that their work was not used: although it was motivated by the
expense of Army key distribution, Britain’s Ministry of Defence did not start
building electronic key distribution systems for its main networks until 1992.
It should also be noted that the classified community did not pre-invent digital
signatures; they remain the achievement of Whit Diffie and Martin Hellman.


