
C H A P T E R

20

Advanced Cryptographic

Engineering
Giveme a rock onwhich to stand, and I will move the world.

– ARCHIMEDES

Whoever thinks his problem can be solved using cryptography, doesn’t understand his problem

and doesn’t understand cryptography.

– Attributed by Roger Needham and Butler Lampson to each other

20.1 Introduction

Cryptography is often used to build a trustworthy component on which more
complex designs can rely. Such designs come from three rather different back-
grounds. The �rst is the government systemsworld we described in Chapter 9,
where the philosophy is to minimise the trusted computing base using mech-
anisms like data diodes and multilevel secure encryption devices. The second
is the world of banking described in Chapter 12 where smartcards are used
as authentication tokens while HSMs are used to protect PINs and keys. The
third is theworld of cryptography research in the 1980s and 1990swhere people
dreamed of solving social problems usingmathematics: of creating anonymous
communications so that oppressed groups could evade state surveillance, lead-
ing to censorship-resistant publishing, untraceable digital cash and electronic
elections that would be impossible to rig. In all these cases, real life turned out
to be somewhat messier than we anticipated.
There are evenmore complex cryptographic components that we use as plat-

forms. But the engineering isn’t just about reducing the attack surface, or sim-
plifying our fault tree analysis. In most cases there’s a signi�cant interaction
with policy, liability and other complicating factors.
In this chapter I’m going to discuss six examples of cryptographic engineer-

ing – full disk encryption, the Signal protocol, Tor, hardware security mod-
ules, enclaves and blockchains. The �rst is a simple example to set the scene;

667

668 Chapter 20 ■ Advanced Cryptographic Engineering

the other �ve use crypto in more complex ways to support a wide range of
applications, including payments in the case of the last three. All but HSMs
are used by cybercriminals.
Hard disk encryption has been around since the 1980s and is one of the sim-

plest security products, at least conceptually. By encrypting the data on your
hard disk when the machine’s in use, you ensure that a thief can only steal the
hardware, not the data.
Signal is a protocol for secure messaging between phones. It is perhaps the

next level up in complexity and is about enabling people to manage a social
network as securely as possible in the face of equipment compromise. Signal
does private contact discovery by means of enclaves.
Tor takes this to the next level by providing anonymity, when you don’t want

someone observing your traf�c to know who you’re talking to or which web-
sites you’re visiting.
HSMs have provided a trust platform for payment services since the 1980s.

But the crypto apps that run on them can suffer from attacks on their application
programming interfaces that are so deeply entangled with payment applications
that they are very hard to �x.
Enclaves are an attempt byCPUvendors to provide a general-purpose crypto

platform: we’ve had Arm’s TrustZone since 2004 and Intel’s SGX since 2015.
They are starting to replace HSMs in payment applications, and also support
private contact discovery in Signal. But they have been plaguedwith problems
from side-channel attacks to class breaks. For example, if you can extract the
master secret key from an SGX chip, you can break the whole ecosystem.
Finally, for a quite different kind of trusted computer, we look at Bitcoin. This

is a project, since 2009, to create a digital currency based on a shared ledger
that emerges using cryptographic mechanisms from the cooperation of mutu-
ally mistrustful parties. Many of the stakeholders are far from trustworthy,
and there are dominant players at several levels in the technology stack. Yet a
trusted computer has somehow emerged, thanks to a combination of cryptog-
raphy and economic incentives, and has kept going despite the huge amounts
of money that could be taken in a successful attack.
It may be useful to bring together in one chapter the trusted platforms of both

bankers and gangsters, so we can contrast them. Some striking facts emerge.
For example, the best attempts of the top technology companies to produce
trusted computers have produced �awed products, while the gangsters seem
to have created something that works – at least for now.

20.2 Full-disk encryption

The idea behind full-disk encryption (FDE) is simple. You encrypt data as it’s
written to disk, and do decryption as it’s read again. The key depends on an

20.2 Full-disk encryption 669

initial authentication step such as a password, which is forgotten when the
machine sleeps or is switched off. So if a doctor leaves their laptop on a train,
only the hardware is lost; the medical records are not. FDE has become a regu-
latory requirement inmany industries. In Europe, privacy regulators generally
see the loss of machines with FDE as not serious enough to attract a �ne or to
need mandatory noti�cation of data subjects. Many phones and laptops come
with FDE; with some it’s enabled by default (Android) while with others it just
takes a click (Mac).
Scratch a little under the surface, though, and there’s a wide variance in qual-

ity. From the early days of hard disks in 1980s, software FDE products were
available but imposed a performance penalty, while hardware products cost
more and were export-controlled. The engineering isn’t trivial, as you need a
platform onwhich to run the initial authentication step. Early products offered
an extra encrypted volume but did not protect the host operating system and
could be defeated bymalware. The initial authentication is tricky in otherways.
If you derive the disk key from a user password, then a thief can try zillions of
them of�ine, as we discussed in section 3.4.4.1, and guess anything a normal
user sets up. A hardware TPM chip can limit password guessing, and from
2007 this became available for Windows with BitLocker. Integrating FDE into
a platform enables the vendor to design coherent mechanisms for trusted boot
of an authentic copy of the operating system, setting up and managing recov-
ery keys, and coping with quite complex interactions with software upgrade,
swap space, device repairs, the backup and recovery of user data, and factory
reset when the device is sold.
Third-party offerings started to offer some extra features: TrueCrypt, for

example, offered a steganographic �le system where the very existence
of a disk volume would remain hidden unless the user knew the right
password [115]1. A crypto phone sold to criminals, EncroChat, had a whole
hidden partition containing encrypted chat and VOIP apps; I’ll discuss such
products in more detail in section 25.4.1. However most people now use
the FDE facility provided by the vendor of their phone or laptop, as proper
integration involves quite a lot of the platform. Since 2010 we’ve had a special
mode of operation, XTS-AES, designed for FDE; it encrypts each block salted
with the sector number, and has a mechanism to �t disc blocks to block
ciphers. Offerings such as Microsoft’s BitLocker and Apple’s FileVault have
an overhead of only a few percent, when run on CPUs with AES support.
Yet attacks continue. In 2008, Alex Halderman and colleagues at Princeton

came up with cold boot attacks, which defeated the principal FDE products then

1That product was suddenly discontinued and its anonymous developers recommended that
users migrate to other products because of an unspeci�ed vulnerability; some suspect that this
was a ‘warrant canary’, a pre-planned warning message whose transmission the developers sup-
press by certifying regularly that they are not subject to coercion, but which �res off a warning
once they’re served with a subpoena or warrant [62].

670 Chapter 20 ■ Advanced Cryptographic Engineering

on the market and can still present a problem for many machines [855]. As
I described in section 18.3, you freeze a computer’s DRAM in which the tran-
sient encryption key is stored, then reboot the device with a lightweight oper-
ating system and acquire a memory image, from which the key can be read.
In 2015, we found that most Androids were insecure: the factory reset func-
tion was so badly engineered by most OEMs that credentials, including FDE
keys, could be recovered from second-hand devices [1761]. Andmost Android
phones don’t get patched once they’re no longer on sale. And in 2019, Carlo
Meijer and Bernard van Gastel found that the three third-party FDE products
that held 60% of the market were insecure, that open-source software encryp-
tion would have been better, and that BitLocker turned itself off if one of these
hardware products appeared to be present; thanks to their work, it no longer
does so [1287]. And then there’s the collateral damage. Now that lots of sen-
sitive data are kept not on hard disks but in Amazon S3 buckets, auditors
routinely demand that these buckets are encrypted; but as the failure mode
of an S3 bucket isn’t a burglar in Amazon’s data centre but negligence over
access controls, it’s unclear that S3 bucket encryption achieves anything other
than tick-box compliance.
And �nally one has to consider abusability, of which there are at least two

signi�cant kinds. First, the wide availability of FDE code is one of the two
components that led to the recent wave of ransomware attacks, where a gang
penetrates your systems, installs FDE, lets it rununtil you’ve encrypted enough
backups to make recovery painful, then demands a ransom for the key. (The
other component is cryptocurrency, which I’ll discuss later in this chapter.) Sec-
ond, many people consider FDE to be magic insurance against compromise,
andwon’t report a laptop left on a train if it had FDE enabled (or was supposed
to), even if the �nder might have seen the password or be able to guess it.
So even the simplest of encryption products has a signi�cant entanglement

with compliance, is much more complex under the hood than you might think
at �rst glance, usually imposes some performance penalty, and can be vulner-
able to a capable opponent – even years after the relevant attacks have been
published.

20.3 Signal

As smartphones spread round the world, people switched from SMS to mes-
saging apps such asWhatsApp, Telegramand Signal; they’re cheaper andmore
�exible, allowing you to create groups of families and friends. Pretty soon they
started supporting voice and video calls too, and offering end-to-end encryp-
tion. It had previously been possible to encrypt email using programs like PGP,
but it was rather �ddly (as we discussed in section 3.2.1) and remained a niche
activity. The arrival of new platforms meant that message encryption could be

20.3 Signal 671

made universal, shipped as a default with the app; and the Snowden disclo-
sures helped stoke the public demand.
Signal is a free messaging app, initially developed by a man who uses the

name of Moxie Marlinspike. It set the standard for end-to-end encryption of
messaging, and its mechanisms have been adopted by competing products
including WhatsApp. Mobile messages can be highly sensitive, with every-
thing from lovers’ assignations through business deals to political intrigues at
diplomatic summits; yet mobile phones are often lost or stolen, or sent in for
repair when the screens break. So keymaterial in phones is frequently exposed
to compromise, and it’s not enough to just have a single long-lived private
key in an app. The Signal protocol therefore provides the properties of forward
secrecy, that a key compromise today won’t expose any future traf�c, and back-
ward secrecy, whichmeans that it won’t expose previous traf�c either. These are
now formalised as post-compromise security [453].
The protocol has three main components: the Extended Triple Dif�e-Hellman

(X3DH) protocol to set up keys between Alice, Bob and the server; a ratchet
protocol to derive message keys once a secret key is established; and mecha-
nisms for �nding the Signal keys of other people in your address book.
We can’t use vanilla Dif�e-Hellman to establish a fresh key between Alice

and Bob, as they might not be online at the same time. So in the X3DH pro-
tocol [1229], each user U publishes an identity key IKU and a prekey SKU to a
server, together with a signature on the latter that can be veri�ed using the for-
mer. The algorithms are elliptic-curve Dif�e-Hellman and elliptic-curve DSA.
WhenAlicewants to send amessage to Bob, she fetches Bob’s keys IKB and SKB

from the server, generates an ephemeralDif�e-HellmankeyEKA, and combines
them with Bob’s keys in all the feasible ways: DH(IKA, SPKB), DH(EKA, IKB),
and DH(EKA, SPKB). These are hashed together to give a fresh key KAB. Alice
then sends Bob an initial message containing her keys IKA and EKA, a note of
which of Bob’s prekeys she used, and a ciphertext encrypted using KAB so that
he can check he’s got it too. Optionally, Bob can upload a one-time ephemeral
key that Alice will combine with EKA and hash into the mix.
Given an initial Dif�e-Hellman key KAB, Alice and Bob then use the double

ratchet algorithm to derive message keys for individual texts and calls. Its pur-
pose is to recover security if one of their phones is compromised. It uses two
mechanisms: a key derivation function (KDF) or one-way hash function to update
stored secret keys, and further Dif�e-Hellman key exchanges. Alice and Bob
each maintain separate KDF chains for sending and for receiving, each with a
shared-secret key and a Dif�e-Hellman key. Each message carries a new Dif�e
Hellman key part which is combined with the key for the relevant chain, while
the shared-secret key is passed through the KDF. The actual details are slightly
more �ddly, because of the need to deal with out-of-order messages [1514].
The goal is that an opponent must compromise either Alice’s phone or Bob’s
continuously in order to get access to the traf�c between them.

672 Chapter 20 ■ Advanced Cryptographic Engineering

The really tricky part is the initial authentication step. If Charlie could take
over the server and send Alice his own IK instead of Bob’s, all bets are off. This
is the attack being mounted on messaging apps by some intelligence agencies.
Systems such as Apple’s iMessage don’t just send a single identity key IK to
your counterparty but a whole keyring of device keys – one for each of your
MacBooks, iPhones and other Apple devices. Ian Levy and Crispin Robinson
of GCHQpropose that laws such as the UK’s Investigatory Powers Bill be used
to compel providers to add an extra law-enforcement key to the keyring of any
user against whom they get a warrant [1155]. This has led to policy tussles in
the USA, the UK and elsewhere, to which I return in section 26.2.7.4. Signal
attempts to forestall such attacks by being open source, so that Alice and Bob
canmore easilywork outwhether their private conversation has been joined by
Charlie as a silent conference call partner, or ‘ghost user’. Keeping such surveil-
lance covert may be easier if the phone app software remains opaque.
The upshot is that if Charlie wants to exchange Signal messages with Alice

while pretending to be Bob, he has to either compromise Bob’s phone or steal
Bob’s phone number. The options are much the same as if he wanted to steal
money from Bob’s bank account. They include hacking and stealing the phone;
using SS7 exploits to steal Bob’s SMS messages; and a SIM swap attack to take
over Bob’s phone number. The easiest attack for an individual tomount is prob-
ably SIM swapping, which we discussed in section 12.7.4. Signal now offers
an additional PIN that you need to enter when recovering service on a phone
number on which a different handset was previously active. But nation states
have sophisticated hacking tools, and have SS7 access. So if the FSB’s in your
threatmodel, it’s best to use a phonewhose number they don’t know, and don’t
carry it around switched on at the same time as a phone they do know is yours,
or they might correlate the traces – as I described in section 2.2.1.10.
Aswewill discuss in section 26.2.2, much of the bene�t of signals intelligence

comes from metadata, from knowing who called whom and when (or who
traveled with whom and when). So for a whistleblower, the game depends on
howmany other peoplewill become suspects aswell as you – the anonymity set.
If you’re a senior civil servant thinking of leaking an illegal policy to a news-
paper, and you’re one of ten people who knows the story, then you might be
the only one of the ten who has ever used Signal.
However, if you’re one of hundreds of low-level suspects (say you’re a union

organiser or NGO staffer) and might be on a long list of targets for thematic
collection, then you may want to block the local police from systematically
recording your patterns of contacts, and here Signal can indeed help. It offers
the interesting innovation of private contact discovery.
Previous attempts to help ordinary people use end-to-end encryption,

such as the email encryption program PGP, never got much traction outside
specialist niches because key management was too much bother. Messaging
apps solved the usability problem by demanding access to your address book,

20.3 Signal 673

looking up all your contacts on their servers to see who else was a user and
then �agging them so you know you can message them. However, giving ser-
vice �rms a copy of your address book is already a privacy compromise, and
if you also let them keep a plaintext record of your social graph, pro�le name,
location, group memberships and who is messaging whom, then investigators
can get all this by subpoena. The original version of Signal compared hashes
of the phone numbers in people’s address books to discover who was using
it; however, Christof Hagen and colleagues used 100 accounts over 25 days to
scan all 505m phone numbers in the USA, discovering 2.5m Signal users [849].
Signal has now implemented private contact discovery; I will discuss it later in
section 20.6 which discusses SGX, the mechanism it uses. However, even with
private contact discovery, when you set up a Signal account on your phone
it becomes visible to everyone in your address book who’s also on Signal, so
they might say – ‘Hey, Fred’s about to leak something’. (This effect may have
been mitigated somewhat when lots of government employees started using
Signal following the election and inauguration of President Trump, including
people who had held Top Secret clearances for decades.)
A critical but less visible part of the system is the message server. This has to

store encrypted messages that have not yet been delivered but how much else
is kept and for how long2? Signal keeps records of group memberships, but
there’s now a proposal for anonymous group messaging, which would make
group members known to each other but not to Signal’s servers [411]. Again,
technology can only do so much; if one member of your group is disloyal, they
can betray others. However Signal has got real traction as the leading commu-
nications security tool available to the public. There was a signi�cant uptick
in usage in the USA after the 2016 election, and in 2020 the European Com-
mission (Europe’s civil service) ordered its staff to switch to Signal after the
compromise of a server containing thousands of diplomatic cables [401].
There was an upset in July 2020, when a Signal update forced users to select

a PIN, with a view to keeping each user’s contact data encrypted in an enclave,
so it could be recovered if the user got a new phone, and so that there could be
some other way to make a Signal contact other than by sharing a phone num-
ber. This created a storm of protest as users assumed that Signal would also
keep message content; other users didn’t think a PIN gave enough protection,
or didn’t want to give Signal a PIN they used for banking, or just didn’t like
the idea of any centralised data at all. People started questioning the wisdom
of relying on a secure communications appwhose chief maintainer is someone
whouses a pseudonym,who can holdmillions of users hostage on awhim, and
whose backing was partly from the government and partly from a billionaire3.
What should the governance of public-interest critical infrastructure look like?

2There was a debate about how to handle undelivered messages when keys change, and the
WhatsApp implementation was criticised for prioritising delivery over failing closed.
3Brian Acton, one of the founders of WhatsApp.

674 Chapter 20 ■ Advanced Cryptographic Engineering

Signal claims to keep no records of traf�c, but what if a FISA warrant from
the NSA had forced them to do so and lie about it? This brings us to the harder
question of how communications can be made anonymous.

20.4 Tor

The Onion Router (Tor) is the main system people use to get serious anonymity
online, with about 2 million concurrent users in 2020. It began its life in 1998
at the US Naval Research Laboratory, and was called Onion Routing because
messages in it are nested like the layers of an onion [1593]. If Alice wants to
visit Eve’s website without Eve or anyone else being able to identify her, she
sets up a TLS connection to a Tor relay operated by Bob, which sets up a TLS
connection to a Tor relay operated byCarol, which in turn sets up a TLS connec-
tion to a Tor relay operated by David – from whose ‘exit node’ Alice can now
establish a connection to Eve’s website [1362]. The idea is to separate routing
from identity – anyone wanting to link Alice to Eve has to subvert Bob, Carol
and Dave, or monitor the traf�c in and out of Bob’s and David’s systems.
The inspiration had been a 1981 idea of David Chaum’s, themix or anonymous

remailer [412]. This accepts encrypted messages, strips off the encryption, and
then remails them to the address that it �nds inside. People experimentedwith
these in the 1990s and found that you need three more things to make it work
properly. First, you need more than one mix; an opponent could compromise
a single mix by coercing the operator, or simply correlating the traf�c in and
out. Second, you need to engineer it for the traf�c you want to protect, be that
email, web or messaging. Third, and hardest of all, you need scale.
TheNavy opened Tor up to theworld in 2003 because you can only be anony-

mous in a crowd. If Tor had been restricted to US intelligence agents, then
anyone using it would be a target. It is now maintained by the Tor Project, a
US nonpro�t that maintains the Tor Browser, which has become the default Tor
client. This not only handles circuit setup and encryption but manages cook-
ies, JavaScript and other browser features that are hazardous to privacy. Similar
functionality is also built into some other browsers, such as Brave. There’s also
software for Tor relays, which are run by volunteers with high-bandwidth con-
nections; in 2020, about 6,000 active relays serve about 2 million users. When
you turn on a Tor-enabled browser, it opens a circuit by �nding three Tor relays
through which it connects to the outside world.
Tor’s cryptographic and software design has evolved over 20 years in the face

of a variety of threats and abuse, and it is now used as a component in many
applications. It’s used to defeat censorship in countries like Iran and Pakistan
so you can connect to Facebook and readAmerican and European newspapers.
The US State Department supports it, and Facebook is the biggest Tor destina-
tion. It can also be used to connect to underground dark markets where you

20.4 Tor 675

can buy drugs and malware. It can be used to leak classi�ed documents. It can
be used to visit child sex abuse websites. The police also use it to visit such
sites, so the operators don’t know they’re police.
The principal vulnerabilities were known from day one and documented in

the 1998 paper that introduced onion routing to the world, six years before
Tor itself appeared [1593]. But they have frequently been overlooked by
careless users. First, amalicious exit node can monitor the traf�c if Eve’s website
doesn’t use encryption, or if she uses it in such a way that the exit node can
do a man-in-the-middle attack. In September 2007, someone set up �ve Tor
exit nodes, monitored the traf�c that went through them, and published the
interesting stuff [1361]. This included logons and passwords for a number of
webmail accounts used by embassies, including missions from Iran, India,
Japan and Russia4. Yet the Tor documentation made clear that exit traf�c
can be read, so more careful diplomats would have used a mail service that
supported TLS encryption, as Gmail already did by then.
The second problem is the many tricks that web pages employ to track users.

This was themain reason for the introduction in 2008 of the Tor Browser, which
limits the tracking ability of cookies and other �ngerprinting mechanisms. But
many applications get users to identify themselves explicitly, or leak informa-
tion without realising it. In section 11.2.4 I discussed how supposedly anony-
mous search histories from AOL identi�ed users: a few local searches (that tell
where you live) and a few special-interest searches (that reveal your hobbies)
can be enough.
Third, low-latency, high-bandwidth systems such as Tor have some intrinsic

exposure to traf�c analysis [1365]. A global adversary such as the NSA, that
taps traf�c at many points in the Internet, need only tap a small number of
exchange points to get a good enough sample to reconstruct circuits [1367]. In
practice this is harder than it looks5. Tor has made clear since the start that it
does not protect against traf�c con�rmation attacks, where the opponent con-
trols both the entry and exit relays and correlates the timing, volume or other
characteristics of the traf�c to identify a particular circuit. Indeed, in 2014 it
was discovered that someone (presumably an intelligence agency) had been
doing just this, volunteering relays into the system that tinkered with protocol
headers in order to make it easier [561]. Tor relays now have countermeasures
against such tweaks, but traf�c con�rmation is still a threat.
Fourth, as Tor connects through a pool of some 6,000 relays, a �rewall can

simply block their IP addresses. This is done by some companies and also by
some countries, most notably China. To circumvent such blocking, volunteers
make available Tor bridges – Tor entry nodes not listed in the public directory.

4This gave an insight into password choice: Uzbekistan came top with passwords like ‘s1e7u0l7c’
while Tunisia just used ‘Tunisia’ and an Indian embassy ‘1234’.
5The intelligence community paid a compliment to Tor, on a GCHQ slide deck leaked by Ed
Snowden, saying “Tor stinks!”

676 Chapter 20 ■ Advanced Cryptographic Engineering

Various games are played as Chinese and other censors try to �nd and block
these too, and to characterise Tor traf�c. China appears to prefer that people
circumventing its national �rewall use VPNs instead; these are not only more
scalable but easier to shut down completely at times of crisis (such as in the
early stages of the 2020 coronavirus outbreak).
Law-enforcement agencies have on a number of occasions managed to �nd

and close down Tor onion services, websites that are available only through the
Tor network; rather than a normal URL, they have a ‘.onion’ address that is
essentially a cryptographic key. The most famous such service was Silk Road,
an underground marketplace where people bought and sold drugs; its oper-
ator was arrested because of poor operational security (the email address he
used to announce his new service could be traced back to him). Other onion
services have had their servers hacked, or supply chains traced. Many of them
use cryptocurrencies, which we’ll describe later and which can also be traced
in variousways. There have also been attacks on the browsers of Tor users with
techniques such as zero-days and sandbox escapes. And even in the absence of
technical failures, anonymity is intrinsically hard; real-world transactions (and
indeed real-world web traf�c) can be very dirty, so unexpected inferences can
often be drawn.
As with FDE, Tor has a signi�cant entanglement with compliance, helping

a variety of actors to evade surveillance and circumvent laws both good and
bad. The engineering has become a lot more complex under the hood than
it looks. It de�nitely imposes a performance penalty – websites can take a
second to load rather than a few hundred milliseconds. And despite the
robustness of the Tor system itself, it has intrinsic limitations that are not
intuitively obvious and make anonymity systems built on it hazardous to use.
Anonymity systems require careful operational security aswell as just the right
software.
The governance aspects are of interest. Tor is maintained by the Tor Project,

a US nonpro�t set up in 2006 to formalise a volunteer project that had started
in 2002. Although it has many volunteers, a growing core of permanent staff
have been funded from various sources over the years, from the EFF to the US
State Department. It remains at heart an international community of people
motivated by human rights. An ethnographic study by Ben Collier describes
it as made up of three overlapping groups: a group of engineers who see Tor
as a structure, and believe that political problems can be solved by doing engi-
neering; a group of activists see it as a struggle, and are committed to speci�c
political values such as anti-racism;while a third group of people largelymain-
tain the Tor relays, are generally politically agnostic, and see what they do as
providing infrastructure – “privacy as a service” [455]. Security at scale requires
infrastructure, and to provide this largely by volunteer effort requires leaders
who can translate between the different stakeholders’ agendas and negotiate
values rather than just contracts.

20.5 HSMs 677

20.5 HSMs

In the chapter on banking and bookkeeping, we described how banks use
HSMs to enforce a separation-of-duty policy: no single person at the bank
should be able to get their hands on a customer’s card details and PIN.
HSMs are also used to protect the SSL/TLS keys for many websites; you
don’t want important live keys to be sitting on a developer’s laptop, or to
be easily extractable by a cloud provider through a memory dump. In the
cryptocurrency industry, HSMs are used to protect keys that could sign away
substantial assets. In the chapter on Tamper Resistance, we described the
mechanisms used to make the HSM tamper-proof. But this isn’t enough. You
also have to ensure that when you split a computation between a more trusted
component such as an HSM and a less trusted component, an attacker can’t
exploit the split.
Whenever a trusted computer talks to a less trusted one, you have to expect

that the less trusted device will lie and cheat, and probe the boundaries by
using unexpected combinations of commands, to trick the more trusted one.
How can we analyse this systematically?
Banking HSMs have a lot to teach. In 1988, Longley and Rigby identi�ed

the importance of separating key types while doing work for security module
vendor Eracom [1186]. In 1993, we reported a security �aw that arose from a
custom transaction added to a security module [108]. However, we hit paydirt
in 2000 when Mike Bond, Jolyon Clulow and I observed that HSM APIs had
become immensely complex, with hundreds of different transactions involv-
ing complex combinations of cryptographic operations to support dozens of
payment protocol variants, and started to think systematically about whether
there might be a series of HSM transactions that would break it [72]. We asked:
“How can you be sure that there isn’t some chain of 17 transactions which will
leak a clear key?’ After we spent some time staring at the manuals, we started
to discover lots of vulnerabilities of this kind.

20.5.1 The xor-to-null-key attack

HSMs are driven by transactions sent to them by servers at a bank or
ATMs in the �eld. The HSM contains a number of master keys that are kept
in tamper-responding memory. Most keys are stored outside the device,
encrypted under one or more master keys. It’s convenient to manage keys
for ATMs and other terminals in the databases used to manage them; and
nowadays many HSMs are located in the Azure and Amazon clouds where
they serve multiple tenants.
The encrypted working keys have a type system that classi�es them by func-

tion. For example, in the PCI standard for security modules, a PIN derivation

678 Chapter 20 ■ Advanced Cryptographic Engineering

key – themaster key used to derive a PIN from an account number as described
in section 12.4.1 – is stored encrypted under a particular pair of master DES
keys tomark it as a non-exportable working key. The TerminalMaster Key for an
ATM is of the same type, and you’ll recall from section 12.4.1 that ATM security
policy is dual control, so the bank generates separate keys for two ATM custo-
dians, say the branch manager and the branch accountant, who enter them
at a keypad when the device is commissioned, or following a service visit.
The HSM thus has a transaction to generate a key component and print it out
on an attached security printer. It also returns its encrypted value to the call-
ing program. There was another transaction that combines two components to
produce the terminal master key: given two encrypted keys, it would decrypt
them, exclusive-or them together, and return the result – encrypted in such a
way as to mark it as a non-exportable working key.
The attack was to combine a key with itself, yielding a known key – the key

of all zeros – marked as a non-exportable working key. As there was a further
transaction, which would encrypt any non-exportable working key with any
other, you were now home and dry. You could extract the crown jewels – the
PIN derivation key – by encrypting it with your all-zero key. You can now
decrypt the PINderivation key andwork out the PIN for any customer account.
The HSM has been defeated.
The above attack went undiscovered for years. The documentation did not

spell out what the various types of key in the device were supposed to do;
non-exportable working keys were just described as ‘keys supplied encrypted
under master keys 14 and 15’, and the implications of a transaction to encrypt one
such key under another were not immediately obvious. In fact, the HSMs had
simply evolved from earlier, simpler designs as ATM networking was intro-
duced in the 1980s and banks asked for lots more features so they could make
heterogeneous networks talk to each other.
So Mike Bond built a formal model of the key types used in the device and

immediately discovered another �aw. You could supply the HSM with an
account number, pretend it’s a MAC key, and get it encrypted with the PIN
veri�cation key – which also gives you the customer PIN directly. Confused?
Initially everyone was – modern APIs are way too complicated for bugs to be
evident on casual inspection. Anyway, the full details are at [101]. The latest
HSMs have strong typing to make it easier to reason formally about keys.

20.5.2 Attacks using backwards compatibility
and time-memory tradeoffs

We worked with an HSM vendor, nCipher, who supplied us with samples of
their competitors’ products, so we could break them – not just to help their
marketing, but to enable them to migrate customer key material to their own

20.5 HSMs 679

products. The top target at the time was the IBM product, the 4758 [953]. This
was the only device certi�ed to FIPS 140-1 level 4; in effect the US govern-
ment had said it was unbreakable. It turned out to be vulnerable to an attack
exploiting backwards compatibility [280].
As DES became vulnerable to keysearch during the 1980s, banks started

migrating to two-key triple-DES: each block was encrypted with the left key,
decrypted with the right key and then encrypted with the left key once more.
This bright idea gave backward compatibility: if you set the left key equal
to the right key, the encryption reverts to single-DES. The 4758 stored left
keys and right keys separately, and encrypted them differently, giving them
different types – but failed to bind together the two halves of a triple-DES
key. You could take the ‘left half’ of a single-DES key plus the ‘right half’ of
another, put them together into a true triple-DES key, and then use this to
export other keys.
So all you had to do to break the 4758 was a single-DES keysearch. That’s not

too hard now, but was still a fair bit of work back in 2002. Fortunately there
was another vulnerability – a time-memory tradeoff attack. That generation of
HSMs had ‘check values’ for keys – one-way hashes of each key, calculated by
encrypting a string of zeroes. Suppose you want a single DES key of a speci�c
type. You precompute a table of (say) 240 keys and their hashes. You get the
HSM to generate keys of the desired type and output the hashes until you see a
hash that’s already in the table. This takes about 216 hashes,which takes an hour
or so [449]. The backwards-compatibility and time-memory tradeoff attacks are
examples of an API attack on the HSM platform itself rather than on the PCI
PIN management app.

20.5.3 Differential protocol attacks

The 4758 bugs got �xed, and recent models of ATM offer public-key
mechanisms for automatic enrolment. But legacy key-management and
PIN-management mechanisms persist at the app layer, as it’s hard to change
the architecture of a distributed system with hundreds of vendors and thou-
sands of banks. And there was much more to come. The next wave of attacks
on HSM APIs was initiated by Jolyon Clulow in 2003; they perform active
manipulation of the application logic to leak information. Many HSMs sup-
port transactions tailored for speci�c applications; the largest market segment
is to support card payments, though there are also HSMs for prepayment
utility meters, for certi�cation authorities and even for nuclear command and
control.
Clulow’s �rst attack exploited error messages [451]. I described in

section 12.4.2 how banks who just wrote a customer’s encrypted PIN to
their bank card got attacked, as a customer could change the account number

680 Chapter 20 ■ Advanced Cryptographic Engineering

to another one and use their PIN to loot that account. In order to stop such
attacks, Visa introduced an optional PIN block format that exclusive-ors
the PIN with the account number before encrypting them. But if the wrong
account number was sent along with the PIN block, the HSM would decrypt
it, xor in the account number, and when the result was not a decimal number,
it would return an error message. So by sending a few dozen transactions
to the HSM with a variety of wrong account numbers, you could work out
the PIN6. There are now special PCI rules for HSMs on PIN translation [979].
Complexity opens up new attacks, which need yet more complexity to
patch them.
A further class of attacks was then found by Mike Bond and Piotr Zielinski.

Recall the method used by IBM (andmost of the industry) to generate PINs, as
shown in Figure 12.3. The primary account number is encrypted using the PIN
veri�cation key, giving 16 hex digits. The �rst four are converted to decimal,
and while most banks do this by taking the hex digits modulo 10, not all do.
HSM vendors parametrised the operation by having a decimalisation table, of
which the default is 0123456789012345,which just reduces the hex outputmod-
ulo 10. This was a big mistake.
If we set the decimalisation table to all zeros (i.e., 0000000000000000) then

the HSM will return a PIN of ’0000’, albeit in encrypted form. We then repeat
the call using the table 1000000000000000. If the encrypted result changes, we
know that the DES output contained a 0 in its �rst four digits. Given a few
dozen queries, the PIN can be deduced. Attacks that compare repeated, but
slightly modi�ed, runs of the same protocol, we call differential protocol analy-
sis. The only real solution was to pay your HSM vendor extra for a machine
with your own bank’s decimalisation table hard-coded. That may cause more
problems when you want to move your bank to the cloud, and share HSMs
maintained by Amazon or Azure7.
At a philosophical level, this illustrates the dif�culty of designing a robust

secure multiparty computation – a computation that uses secret information from
one party, but also some inputs that can bemanipulated by a hostile party [100].
Even in this extremely simple case, it’s so hard that you end up having to aban-
don the IBMmethod of PIN generation, or at least nail down its parameters so
hard that you might as well not have made them tweakable in the �rst place.
At a practical level, it illustrates one of the main reasons APIs fail over time.

They get made more and more complex, to accommodate the needs of more
and more customers, until suddenly there’s an attack.

6There are now four different PIN block formats for PIN transmission, three of which include the
PAN as well; and there’s a further format, the PIN Veri�cation Value (PVV), which is a one-way
encryption of the PIN and PAN that’s sent by banks to switches such as VISA and Mastercard if
they want the switch to do stand-in PIN veri�cation when their own system is down.
7One vendor decreed that a tablemust have at least eight different values, with no value occurring
more than four times. But this doesn’t work: 0123456789012345, then 1123456789012345, and
so on.

20.5 HSMs 681

20.5.4 The EMV attack

You’d have thought that after the initial wave of API attacks were published in
the early 2000s, HSM designers would have been more careful about adding
new transactions. However, just as security researchers and HSM vendors
found and �xed bugs, the banking industry mandated new ones.
For example, an HSM feature ordered by EMVCo to support secure mes-

saging between a smartcard and a bank HSM introduced an exploitable vul-
nerability in all EMV compliant HSMs [22]. The goal was to enable a bank to
order any EMV card it had issued to change some parameter, such as a key, the
next time it did an online transaction. So EMVCo de�ned a transaction Secure
Messaging For Keys whereby a server can command an HSM to encrypt a text
message, followed by a key of a type for sharing with bank smartcards. The
encryption can be in CBC or ECB mode, and the text message can be of vari-
able length. The attack is to choose the message length so that just one byte of
the target key crosses the boundary of an encryption block. That byte can then
be determined by sending a series of messages that are one byte longer, and
where the extra byte cycles through all 256 possible values until the key byte
is found.

20.5.5 Hacking the HSMs in CAs and clouds

Themost recentHSMbreak, in 2019, was by Jean-Baptiste Bédrune andGabriel
Campana, on a Gemalto HSMwhose application supported the PKCS#11 stan-
dard for public-key cryptography so it could be used in certi�cation authorities
and as a TLS accelerator. (This standard is notoriously obscure and dif�cult to
implement.) They got a software development kit for the HSM, which con-
tained an emulator for the device, and fuzzed it until they found several vul-
nerabilities. They managed to patch the authentication function so they could
login as admin into the HSM and install tools that read out the keys [204].
This is just one example ofmanywhere sophisticated cryptographywas fatally
undermined by careless software engineering.

20.5.6 Managing HSM risks

At one time or another, someone had found an attack on at least one version
of every security module on the market. The root cause, as so often in security
engineering, is featuritis. People make APIs more complex until they break.
Banks still have to use HSMs for compliance with PCI rules, but the crypto

keys in them are not protected by the tamper responding enclosures alone. The
con�guration management has to be tight and vendor software patches have
to be applied promptly, just like in other systems. But while most banks of any

682 Chapter 20 ■ Advanced Cryptographic Engineering

size have people who understand software security and the patching lifecycle,
they are less likely to have serious HSM expertise.
Specialist �rms offer HSM management systems, and we’ll have to see if

these get subsumed eventually by the big cloud service providers. Manage-
ment of cloud HSMs is still a work in progress, and products such as Microsoft
Cloud Key Vault allow keys to be moved back and forth between HSMs and
enclaves that offer similar functionality. Of course, if a PIN management app
has intrinsic API vulnerabilities, these will be independent of whether it’s run-
ning on a traditional on-premises HSM, an HSM in a cloud data centre, or an
enclave. Indeed, one selling point of the Microsoft offering is ‘Removing the
need for in-house knowledge of Hardware Security Modules’ [1311].
With that warning, it’s time to look at enclaves.

20.6 Enclaves

Enclaves are likeHSMs in that they aim to provide a platformonwhich you can
do some computation securely on a machine operated by someone you don’t
entirely trust. Early attempts involved mechanisms for digital rights manage-
ment (DRM), which obfuscated code to make it hard to interfere with; I discuss
this further in the chapter on copyright. They were followed by the ‘trusted
computing’ initiative of the early 2000s, which proposed an architecture in
which CPUs would execute encrypted code, with the keys stored in a sepa-
rate Trusted Platform Module (TPM) chip. Arm duly produced TrustZone in
2004, as I described in section 6.3.2.
TrustZone is typically implemented in the System-on-Chip (SoC) at the heart

of a modern Android phone, although its trust boundary is typically the whole
motherboard; enclave data may be available in clear on the bus and in DRAM
chips. The main application has been mobile phones, whose vendors wanted
mechanisms to protect the baseband against user tampering (for regulatory
reasons) and to enable the phone itself to be locked (so that mobile network
operators who subsidise phones could tie them to a contract). In neither case
are hardware attacks a real concern.
Could an enclave mechanism such as TrustZone be used to harden

a phone-banking system against the kind of attacks we discussed in
section 12.7.4? Attempts were made to market it for this purpose, but
even �rms that write banking apps were reluctant to adopt it. Up until 2015,
it was a closed system, and you could only run code in TrustZone if you had
it signed by the OEM. So a developer of a banking app who wanted a ‘more
secure’ authentication component would have to get that signed by Samsung
for Samsung phones, by Huawei for their products, and so on. What’s more,
the code would be different depending on which SoC the product used. Now
it’s hard enough to make an app run robustly on enough versions of Android

20.6 Enclaves 683

without also having to cope with multiple customised versions of TrustZone
running on different SoC offerings. It’s also hard to assess security claims that
vendors make about closed platforms. For the gory details, see Sandro Pinto
and Nuno Santos [1512].
In 2015, Intel launched SGX, whose access-control aspects I discussed in

section 6.3.1. SGX enclaves have aimed at a more ambitious use case, namely
cloud computing. It’s become cheaper to run systems on services such as
AWS, Azure and Google: virtualisation lets resources be shared ef�ciently,
so the costs of data centres, sysadmins and so on can be amortised over
thousands of customers. But this raises many questions. How can you be
sure that sensitive data isn’t leaked to other tenants of the cloud service, for
example via technical exploits of the hypervisor software? Such products have
dozens of bugs patched every year [479]. And what protection do you have
against a nation state using a warrant to get access to your data – in effect a
legal exploit of the hypervisor? The cloud service providers themselves long
for a technical mechanism that would save them the trouble of dealing with
such warrants. Because of these concerns, the security perimeter of SGX is the
boundary of the chip itself. Code and data are encrypted as they leave the
chip, and decrypted as they’re imported into the cache. The CPU’s hardware
protects both con�dentiality and integrity.
The key cryptographic mechanism is software attestation, which enables the

CPU to certify to the owner of the software that it is running without mod-
i�cation on top of trustworthy hardware. SGX enclaves run as applications,
at ring 3, and the CPU machinery isolates their code and data from every-
thing underneath, including both operating system and hypervisor8. The full
details of enclave initialisation, address translation, page eviction, exception
handling and so on are extremely complicated; for an explanation and analy-
sis, see Victor Costan and Srini Devadas [479]. One concern they raise is that
with the exception of memory encryption, SGX is implemented in microcode,
which can be updated; the whole system is therefore changeable. There are
also multiple side-channel attacks, particularly since Meltdown and Spectre
introduced the transient execution family of side-channel attacks, which I dis-
cussed in section 19.4.5. Some have been patched, but the real scandal may be
that Intel has said it won’t �x the Membuster attack as a matter of policy9.
Here my concern is the cryptography used to support the enclave and attest

to the software running on it, and its suitability as a platform for other crypto
or crypto support for applications.

8The earlier proposals of the Trusted Computing Group required that the whole software stack
underneath the enclave be attested and trustworthy, which is incompatible with an untrusted
hypervisor.
9SGX doesn’t defend against cache timing attacks, so when writing enclave code, you can’t use
data-dependent jumps. More generally, it does not protect against software side-channel attacks
that rely on performance counters, but doesn’t give enough information for developers to model
the possible leakage.

684 Chapter 20 ■ Advanced Cryptographic Engineering

As the silicon processes used in high-end CPUs don’t support nonvolatile
memory, the �rst problem is to provide unique and persistent chip keys. Each
chip has fuses into which the fab burns a seal secret and a provisioning secret,
of which the former is not known to Intel but the latter is. This is used to gen-
erate the master derivation key (MDK), which in turn generates key material
dependably across power cycles. Provisioning seal keys are persistent, sowhen
a computer changes owners, Intel doesn’t need to know. These keys enable
the CPU to prove its authenticity to Intel, which supplies it with an attesta-
tion key – a member private key in Intel’s Enhanced Privacy ID (EPID), a group
signature scheme intended to preserve signer anonymity.
These operations are done in a privileged launch enclave (LE). Originally all

SGX code had to be signed by Intel, but recent versions allow code signed by
third parties. Each enclave author is nowaCAand certi�es each enclave,which
has a public key, a product ID and a version number (migration of secrets is
allowed only to higher version numbers to support patching but not rollback).
The same ratchet applies to updates of the CPU microcode.
One issue is that the compromise of one chip’s MDK – in any CPU, any-

where – breaks the attestation security of every CPU in the same group. This
happened in 2019 for AMD’s equivalent of SGX, when a bug in the microcode
enabled such a key to be extracted [339]. Intel is vulnerable in the same way:
given a clear value of MDK you can create an SGX enclave outside of SGX’s
protection mechanisms. If such a break were discovered, Intel would have to
blacklist all the CPUs in the same EPID group.We have no idea how large these
groups are, as all attestations are done opaquely by Intel and usersmust simply
trust the results.
There are now some SGX systems doing real work. An example I mentioned

earlier in this chapter is the messaging app Signal, which uses an enclave
for private contact discovery. Its developers published the source code along
with an extensive discussion of the dif�culties of developing it on the Signal
blog [1228]. The goal is to enable Signal clients to determine whether the
contacts in their address book are also Signal users without revealing their
address book to the Signal service. How can you build a large social graph
without having any insight into it? The idea is that clients can contact the
enclave, verify it’s running the right software, and send their contacts in to
see who’s also a user. However, doing this within the memory limit of an SGX
enclave (128Mb) needs careful organisation of hash tables of an inverted �le
of users’ phone numbers.
There are many more things you have to do to prevent information leakage

throughmemory access patterns: as branches might be observed through such
patterns, critical sections of code must not contain branches. In short, blocking
side channels is much like organising crypto code to run in constant time: �d-
dly, ad hoc, manual and prone to error. SGX is also slow: while the memory
encryption itself adds little overhead, context switching is a killer. Checking

20.7 Blockchains 685

contacts against others is really slow, so the process has to be batched for mul-
tiple joiners to make it acceptable.
Another example of an SGX app is Microsoft’s Cloud Key Vault, which

enables Azure tenants to store secrets such as keys, passwords and tokens
separately from their code [1311]. There’s an app to help you create and
manage certi�cates for TLS; secrets and keys can also be stored in cloud HSMs
at the top end, while routine applications can be both more secure and more
manageable if you don’t have to store database passwords inline in your code.
In short, writing good SGX code is hard. The toolchain is restricted, and

things like antivirus are excluded. If you’re smart, you can write trusted mal-
ware. You can even write malware that will run in one SGX enclave and do
timing attacks on code in other enclaves in the same machine, using the SGX
mechanisms to hide itself from detection [1692].
And even if you trust Intel completely; even if you believe that theNSAwon’t

use a FISA warrant to force Intel to attest to an enclave in debug mode; even
if you’re not worried about an MDK compromise or the exploitation of side
channels – then there’s still the risk of app-layer exposure, just as with HSMs.
If you write your enclave code in such a way that it can be used as an oracle by
less trusted code, you’re in trouble.
Intel (and Arm) are talking about successor versions of their enclave tech-

nology. Meantime Intel points crypto developers at their management engine
(ME), a separatemicrocontroller shipped in theCPU chipset that starts theCPU
and contains a �rmware TPM to do secure boot. It can brick a CPU by erasing
keys if the machine is reported stolen. Its code is proprietary, based on Minix,
and is signed by Intel. It supports yet another enclavewith a Java trusted execu-
tion environment, in which developers can do crypto; for example, in payment
terminals you can engineer a hardware trusted path from the ME to a PIN
pad [1701]. This enables crypto code to be shielded from malware on the CPU
but brings issues of its own, such as attacks involving physical access. The ME
has also had a whole series of vulnerabilities and exploits. It is considered by
the EFF to be a backdoor, and at least one vendor has made machines available
to governments where it is switched off after boot.

20.7 Blockchains

The previous sections on the uses and limits of cryptography, on how cryptog-
raphy can be used to support anonymity, and how crypto apps can suffer �aws
at various levels in the stack, set us up to discuss cryptocurrencies and smart
contracts. During 2016–7, cryptocurrencies were ‘the’ thing, taking their place
in the hype cycle after Big Data and the Internet of Things, alongside AI and
quantum. Tomany people, the word ‘crypto’ now refers to bitcoins rather than
to ciphers.

686 Chapter 20 ■ Advanced Cryptographic Engineering

In 2008, Bitcoin was released quietly by someone using the pseudonym of
Satoshi Nakamoto, with a white paper and an implementation [1377]. This
system of anonymous digital cash circulated initially among hobbyists and
activists on the cypherpunks mailing list, but within two years it had gone
viral. In February 2011, a young libertarian called Ross Ulbricht set up Silk
Road, an online marketplace outside government control. Buyers and sellers
met on a Tor onion service and could pay for goods and services using Bitcoin.
They could rate each other, as on eBay, and there was an escrow service so
that a buyer could deposit bitcoins for release when goods were delivered. Silk
Road rapidly became themarket for themail-order supply of controlled drugs,
and over $1bn worth of trades went through it before the FBI arrested Ulbricht
in October 2013 [423]. Other underground markets adopted Bitcoin too. While
Silk Roadwas trading, the price had risen fromabout a dollar to over a hundred
dollars, and the rising price attracted investors10. Further transaction demand
came from people wanting to get their money out of countries with exchange
controls, leading to investment demand from people seeing Bitcoin as an asset
to be bought in times of crisis, like gold. By 2017 we had a bubble – with the
price of a bitcoin rising steeply through the thousand-dollar mark to a peak in
December 2017 of almost $20k.
Bitcoin has spawned multiple imitators – most of them scams, but some real

innovations too. Boosters claimed that cryptocurrency would enable a new
wave of innovation and automation as machines could negotiate smart con-
tracts with each other without humans or banks getting in the way. At the time
ofwriting (2020), the peak of enthusiasmhas passed, but cryptocurrencies have
become a new asset class for investors, as well as posing multiple problems for
�nancial regulators and law enforcement.
All that said, Bitcoin is a fascinating construct of cryptography and economics

which has led to the emergence of a payment system that is also a trusted com-
puter, out of the distributed effort of millions of machines that attempt to mine
bitcoins. There are no trusted parties other than the people who write the soft-
ware, and no pre-assumed identities of participants. The mechanisms provide
a new way of achieving consensus in distributed systems, quite distinct from
the Byzantine fault-tolerance mechanisms we discussed in section 7.3.1. That
is one reason to include cryptocurrencies as an example of advanced cryp-
tographic engineering; another is the smart contracts and other second-layer
protocols built on top of them, which are of technical interest although they
have had little impact so far on business (the total capital of digital exchanges
may be only about $1bn).
Here is a brief summary of the basic mechanisms.

1. The Bitcoin blockchain is an append-only �le containing a series of
transactions.

10When Ulbricht was busted, the Bitcoin price fell from $145.70 to $109.76, but as other drug
markets got going, it quickly recovered.

20.7 Blockchains 687

2. Users appear on the blockchain as addresses – pseudonyms which are
hashes of public keys.

3. Most transactions transfer currency from one address to another by
taking an unspent transaction output (UTXO) from a previous transaction
and transferring it to one or more addresses. Such a transaction must
be signed by the private key corresponding to the UTXO address.

4. To make a payment, you sign a transaction and broadcast it
via a peer-to-peer network to other users. Other users are free
to select a set of requested transactions, check that they’re
valid, and mine them into a new block for the blockchain.

5. Each block of transactions is authenticated by a miner by means of a
SHA256 hash of the block contents and a random salt. Miners try dif-
ferent salts until the hash output has enough leading zeros to make
it a hard enough puzzle. Such a hash constitutes a proof of work, and
�nding them is a random process, so it’s hard to predict which miner
will �nd the next one. The blockchain consists of a chain of hashes and
the blocks they authenticate. The dif�culty of the puzzle is adjusted
automatically so that a new block is mined about every ten minutes.

6. Miners are paid a block reward for each block they mine. This
halves every 210,000 blocks; while I was writing this book in
May 2020, it halved from 12.5 to 6.25 bitcoins per block11.

7. Miners also get transaction fees, which are the amount by which the
inputs of each transaction exceed the outputs. Users bid transaction
fees to get priority for their transactions; they are usually in the tens
of cents but can rise into the tens of dollars at times of congestion.

8. If two competing next blocks are mined then the con�ict is resolved
by the rule that miners mine the longest chain. As a result, transac-
tions aren’t really considered �nal until about half a dozen further
blocks have been mined – about an hour for classic Bitcoin. Even so,
a majority of miners could rewrite history by constructing a chain
that reached even further back – a so-called chain reorganisation.

9. If the con�ict isn’t resolved then you can end up with a fork – the
system spawns two incompatible successors. Bitcoin split in
2017 into Bitcoin and Bitcoin Cash over a policy dispute about
block length, and users who owned bitcoins before the fork
ended up owning bitcoins in both. But some forks have been

11This is about $60,000 as we go to press in September 2020, and a miner with a
reasonably new rig who can buy electricity for 5c per kWh can still expect to mine
Bitcoin for slightly less than the coins’ market value, if you disregard the capital cost
of the equipment. Up till May, the reward was about double the operating cost.

688 Chapter 20 ■ Advanced Cryptographic Engineering

deliberate, and on top of that entrepreneurs have started sev-
eral thousand Bitcoin clones – most of which were scams.

10. Transactions can also contain scripts, which make payments pro-
grammable.

For a detailed description, there are three standard references. The �rst
two are technical expositions by a group of Princeton computer scientists: an
18-page systematisation-of-knowledge paper in 2015 by Joe Bonneau, Andrew
Miller, Jeremy Clark, Arvind Narayanan, Joshua Kroll and Ed Felten [294]
while at 308 pages there’s a 2016 book by Arvind Narayanan, Joe Bonneau, Ed
Felten, Andrew Miller and Steven Goldfeder [1385]. The third is a 2015 paper
in the Journal of Economic Perspectives by Rainer Böhme, Nicolas Christin,
Benjamin Edelman, and Tyler Moore [275]. At the time of writing, these are
getting out of date, so in what follows I will concentrate on developments
since then. I’ll assume you know the detail, or can look it up, or are not too
bothered.
To understand what can go wrong with cryptocurrencies, we have to look at

a lot more than just the cryptomathematics. A common pattern has been that
elegant cryptographic ideas are let down by shoddy software engineering, a
lack of systems thinking and a near-total lack of concern for users.

20.7.1 Wallets

In the beginning, all Bitcoin users were peers: the full client software would
mine Bitcoin and let you spend the coins you mined. But things soon started
to specialise with custom rigs for miners, and light clients for ordinary users
which don’t do mining or store the whole blockchain, but make the process
of buying and selling more manageable. There is no intrinsic concept of an
account, as you own Bitcoin by knowing a private key that will unlock one
or more UTXOs. Wallets initially stored one or more private keys and pro-
vided an interface so the user could see the UTXOs that these keys could spend
(‘my bitcoins’). Wallet security rapidly became a big deal. So-called ‘brain wal-
lets’ that generated private keys from a user-selected passphrase were bro-
ken by attackers doing exhaustive search over the public keys visible on the
blockchain; brain wallets with guessable passwords were typically emptied
within 24 hours [1951].
Software wallets that keep your signing keys on your hard disk, protected

by a passphrase, are an improvement, but vulnerable to malware and other
attacks. Serious operators use hardware wallets, which are essentially small
HSMs and which may be kept of�ine (so-called cold wallets). Even so it is not
unknown for peoplewho are known to ownmillions of dollarsworth of Bitcoin
to be held up by armed robbers in their homes and forced to transfer it. If you

20.7 Blockchains 689

have sole physical custody of a Bitcoin wallet then you’re just as vulnerable
as when, centuries ago, people kept their savings in gold coins. By 2013 we’d
seen the emergence of hosted walletswhere an exchange or other online service
provider does everything for you. That doesn’t really solve the robbery prob-
lem, as the robber will just force you to log on and pay him. But hosted wallets
have led to widespread other fraud and abuse as I’ll describe below.

20.7.2 Miners

As bitcoins grew in popularity and value, more people joined in to mine them.
Mining rigs appeared using FPGAs and then ASICs that run so much faster
than software on general-purpose machines that within a few years they had
taken over. Miners operate where electricity is naturally cheap, such as Ice-
land and Quebec, but are mostly in places like Russia or China where they
can do deals with local of�cials. The total energy consumption of cryptocur-
rencymining during 2019 was about 75TWh, and the CO2 emissions were over
35Mt – comparable to the carbon footprint of New Zealand. As of 2020, each
bitcoin transaction consumes over half a MWh and emits over a quarter ton
of CO2.
Miners have organised themselves into a small number of mining pools

that average their earnings. The control of these pools is opaque. Capacity
can be rented and is sometimes used to attack cryptocurrencies in so-called
51% attacks. The whole point of the blockchain is to prevent double spending
by creating a tamper-proof, public, append-only log of transactions; but if
a majority of miners collude then they can rewrite history and spend coins
multiple times. In the early days, people thought that such an attack would
be instantly fatal to a currency’s credibility, but reality turned out to be
more complex. For example, in January 2019, attackers used this technique
to steal over $1m from Ethereum Classic, a cryptocurrency with a market
capitalisation of over $500m, with chain reorganisations dozens of blocks in
length [1430]. Yet its market value was not signi�cantly affected. Had they
stolen most of it, the price would have collapsed and their loot would have
been worthless. There were two further attacks in August 2020, in one of
which the attackers spent $192,000 to buy the hash power required to steal
$5.6m [1521]. So we need to think carefully about the game theory as well as
the cryptography when reasoning blockchains; the simplistic arguments don’t
always align with reality.

20.7.3 Smart contracts

The scripting language in Bitcoin is simple, but a later cryptocurrency
system, Ethereum, has a Turing-complete VM whose bytecode is usually

690 Chapter 20 ■ Advanced Cryptographic Engineering

compiled from a language called Solidity. Ethereum has become the second
cryptocurrency by market cap as it holds out the prospect of smart contracts
that can perform complex transactions automatically. During the bubble, many
startups talked of using smart contracts to animate the Internet of Things, and
to create new services such as distributed storage, where people might pay
others for the use of their spare hard disk space for backup. The idea of such
a distributed autonomous organisation was heavily promoted during the bubble.
This is linked to the ‘redecentralize’ movement which seeks to move the online
world away from the large service �rms that came to dominate it during the
2000s; and while we have good tools to decentralize the distribution of static,
read-only content, we lacked a good way to decentralize transactions [509]. As
of 2020, the main applications seem to be around trading, where distributed
exchanges (DEXs) enable people to trade one cryptocurrency for another
without human intervention. (They still account for only a tiny fraction of the
total trading volume.)
This has led to interesting new failure modes. Although the consensus mech-

anisms of the original Bitcoin blockchain are believed to be incentive com-
patible, this is not the case when the transactions on a blockchain represent
extra value that aminer can extract bymanipulating the consensus. There have
now appeared arbitrage bots that exploit inef�ciencies in DEXs by frontrunning
(anticipating and exploiting) trades. The bots bid up transaction fees, called gas
in Ethereum; there have been hundreds of millions of these priority gas auctions
where traders hustle to get priority for their trades [508]. Bots might in theory
take over the governance of a market and loot it if they could raise enough
money [870]; they already make large pro�ts by exploiting bugs in smart con-
tracts [1509].
Fixing bugs can be expensive. In 2016, an investment fund called DAO was

set up as a smart contract on the Ethereum blockchain, and attracted over
$150m from over 10,000 investors. Attackers exploited a �aw in the contract
to steal the money12, and after some discussion the Ethereum software was
changed to move the stolen money to a recovery account. This resulted in
a hard fork of the blockchain, with holders of the original cryptocurrency
acquiring units in both the modi�ed currency and in ‘Ethereum Classic’, as
the unmodi�ed version became known.
A Danish study illustrates the further problems of using smart contracts in a

real-world application context. There had been a proposal to use them to pay
parents who have to take time off work to care for sick children, which has
complex legal rules that clerks often miss, leading to appeals. The idea was
to put hashes of the case documents on the Ethereum blockchain so that both
parents and the appeals board can track them, in the hope that automating the

12An alternative view is that if the contract was to accept the output of the code, then the �aw
was in the users’ grasp of what the code did, and in that case nobody stole anything!

20.7 Blockchains 691

execution of decisions would cut bureaucratic foot-dragging. But what about
insiders, hackers and mistakes? Local governments tend to get hacked a lot
and end up paying ransomware. And who updates the contract when the law
changes, or a bug is discovered? Blockchains are by design immutable, so can’t
be patched. But the real deal-breaker was local government fear of losing con-
trol of the process. Two further issues include the fact that people often have
to bend the rules to get stuff done, and that programmers are more likely to
write bugs in an unfamiliar language such as Solidity rather than a familiar
one such as Python or even Cobol – a known problem with new languages,
which I discussed in section 7.3.1.2.

20.7.4 Off-chain payment mechanisms

A standard Bitcoin transaction can take six blocks, or one hour, to become �nal,
and even longer at times of congestion. This may be fast enough for paying
ransoms or buying drugs online, but it’s unimpressive compared with EMV.
What’s more, Bitcoin’s throughput of about 5 transactions per second is no
match for Visa’s 50,000.
People are trying to �x this using side chains, an example of a layer 2 proto-

col; such protocols do transactions outside, but tethered to, a layer 1 protocol
such as Bitcoin or Ethereum. Alice and Bob open a channel by locking coins
on a layer 1 blockchain, and can now do rapid transactions between them-
selves. The key idea is that they commit some cryptocurrency to each other
using a hashed time-lock contract (HTLC) made of two conditional transfers. In
such a transfer, Bob sends Alice h(R), where R is a random number, and Alice
makes a commitment in the blockchain’s scripting language to the effect that
“if you show me R by time t I’ll give you this coin.” Bob makes a similar com-
mitment. This opens a channel for them to trade signed transactions at speed,
until they decide to settle up and close the channel.
Quite a bit more engineering is needed to turn this into a working payment

system. You need a dispute resolution mechanism in case Alice and Bob dis-
agree how much each of them should take from the proceeds. Then you build
mechanisms for Alice to pay Charlie via Bob, and routing algorithms so you
can get money to anybody. In theory this can be peer-to-peer but in practice
such systems appear to organise themselves into hubs, with channels that are
always open, like a banking network. Protocol security involves ensuring that
honest usersmust not losemoney even if others collude. Costs include the need
for intermediate nodes to have enough liquidity to forward transactions, and
the need for all active players to be online – whose implications range from
the theft risks of hot wallets, to the risk of miners front-running Bob when he
broadcasts R, to the risk of mass collapse following a network failure [832].
The leading such system in 2020 is the Lightning network, which makes pay-
ments �nal in seconds, enables people with the right phone app to pay to a

692 Chapter 20 ■ Advanced Cryptographic Engineering

QR code as with WeChat Pay, and is now handling 1000 transactions per day.
The limit here appears to be liquidity: although Lightning chains themselves
are trust-free, they tie up capacity at the nodes, and the recipient has to decide
whether or not to accept them. So a malicious user can set up hundreds of pay-
ments, leave them for hours and then cancel them at no cost. As Lightning’s
total capitalisation appears to be only a few million dollars, this may leave it
somewhat fragile. It also appears very possible that regulators will crack down
on forwarding nodes.

20.7.5 Exchanges, cryptocrime and regulation

Mining all your own coins is inconvenient, and by 2010 entrepreneurs had
set up exchanges that would trade Bitcoin for conventional money. Most went
bust, often because they were hacked, or because insiders stole the money and
claimed to have been hacked. The leader by 2011 was Mt Gox in Japan which
survived one hack in 2011 but went bust in 2014 claiming that it had been
hacked for $460m. The court case continues; news coverage at the time reported
that internal controls and software development processes were chaotic [1282].
That was not all. One of Mt Gox’s innovations was to become a custodial

exchange over the course of 2013. Instead of keeping customer bitcoins in sepa-
rate wallets, for which the exchangemight or might not have temporary access
to the private key after the customer entered the correct password, Mt Gox
started to keep all the Bitcoin in its own wallets, showing customers a notional
account balance when they visited its website. It had made the transition we
saw in eighteenth-century �nance from being a gold merchant to being a bank:
rather than owning a speci�c bag of gold coins in the vault, the customer now
just had a claim on the bank’s whole assets. Victims related how after their
wallets were hosted, they started to see outgoing transactions they had not
authorised. Analysis after the collapse of Mt Gox revealed that many of these
transactions did not even appear on the blockchain. Frommid-2013, when you
bought a bitcoin from them, all they did was to show you a web page saying
that you had a balance of one bitcoin. (And that’s how many exchanges work
to this day.)
The Bitcoin world has been full of scams, and it looks like the majority of

victims of cryptocrime were ripped off by exchanges that went bust, or got
hacked, or that claimed to have been hacked. Even in the �rst three years that
exchanges existed, 2010–13, 18 of the 40 exchanges collapsed [1341].
A report by Chainalysis, a Bitcoin analytics �rm, concluded that exchanges

lost about $1bn to hackers in 2018, with most of the thefts perpetrated by
two crime gangs; one of them has since been linked to North Korea. In
addition to this, turnover on underground markets where drugs and other
illicit goods are bought and sold was $600m, approximately double the value

20.7 Blockchains 693

for 2017 [402]. There’s also market manipulation. John Grif�n and Amin
Shams present evidence that Bitcoin’s price was supported by insider trading
involving Tether, a digital currency pegged to the U.S. dollar, during the 2017
boom [823], raising the prospect that the market price of many cryptocurren-
cies may often have been a result of unlawful manipulation. This has been
borne out by subsequent studies showing that much of the spot trading is
generated by unregulated exchanges [1618].
Market manipulation aside, the largest single cryptocurrency scam to date

appears to have been a Ponzi scheme called PlusToken, which netted some
$3bn from Chinese nationals before the organisers were arrested in 2019 [865].
But Bitcoin has affected many other crime types too. Ransomware went up
from about $2–3m a year to maybe $8m a year between 2001 and 2015, as Bit-
coin suddenly made ransoms easy to collect [92]; this crime type is growing
steadily, although ransoms are also collected via gift cards [1192]. By 2018, bul-
letproof hosting sites, which provide services to cybercriminals, were moving
to cryptocurrency as other payment mechanisms becamemore dif�cult [1454].
In that year, the world’s largest darknet child pornography website, Welcome
to Video, was closed down after its operators were traced via �ows of Bit-
coin on the blockchain, so the pseudonymous nature of cryptocurrency has
its limits [551]. In total, scams and other abuse add up to something like 3% of
cryptocurrency transaction volume directly; and in addition to the visible cryp-
tocurrency exchanges, there are a number of over-the-counter brokers, some
100 of which have been identi�ed as involved in money laundering [403]. The
regular exchanges also make life dif�cult for law enforcement. Crime gangs
may turn proceeds into Bitcoin through one channel, switch it into a different
coin in a second country, and then send it to a third country where they get it
out via bank transfer.
However, although Bitcoin uses pseudonyms, the blockchain contains a

permanent record of all transactions. As we’ve discussed in a number of
contexts – from our chapter on inference control to the section on Tor in this
chapter – anonymity is hard. Real-world transactions and data have context
and allow inferences to be made. Bitcoin users have tried all sorts of tricks to
make transactions more anonymous, for example by splitting payments into
many smaller ones, mixing them up, and then recombining them – a so-called
‘tumbler’ or ‘mixer’. However, if you do that, you taint your bitcoins with
attempted money laundering; and in total, perhaps 10% of Bitcoin have been
stolen, or passed through a money-laundering service, at least once. (For an
analysis, see [117].) As an example, an Ohio man was indicted in 2020 for
operating just such a mixer that laundered $300m [553]. There are also cryp-
tocurrencies that offer more privacy using further cryptographic techniques,
notably Zcash and Monero. At present, Monero offers the strongest privacy
and is designed so that coins can be mined using software; over 4% of its coins
have been mined by malware running on other people’s machines [1500].

694 Chapter 20 ■ Advanced Cryptographic Engineering

Governments have been trying to push back using �nancial regulation.
The US Treasury’s Financial Crimes Enforcement Network (FinCEN) drives
anti-money-laundering (AML) and know-your-customer (KYC) regulations
worldwide, which get incorporated into local law, for example via the EU’s
5th Anti-money-laundering Directive. Some governments go further. For
example, Germany’s regulator BaFin has used existing �nancial regulations to
insist that all exchanges get licenses; as localbitcoins.com, a peer-to-peer
exchange that enables individuals to buy and sell cryptocurrency from each
other for cash, didn’t apply for one, it is blocked there. But at the time of
writing, the biggest push comes from a FinCEN advisory in 2019 that required
cryptocurrency exchanges to implement the ‘travel rule’ whereby anyone
handling a transaction over $10,000 has to identify both sender and recipient
and �le a suspicious activity report if relevant. The exchanges were given until
June 2020 to come up with a solution; at least one individual exchanging sums
over $10,000 has been �ned [688].
Further regulation is on the agenda in Europe too. Mt Gox largely had

Japanese clients while most Chinese appear to use Binance and many people
in the UK and the USA use Coinbase. When one British or American user
sends Bitcoin to another, there’s a fair chance that the transaction never goes
near the blockchain: if they’re both Coinbase customers, then Coinbase can
simply adjust the balances displayed in their Bitcoin wallet webpages. This
immediately raises the question of why the exchanges are not regulated
like any other money service business. In the EU, the E-money Directive
might seem to apply, yet regulators in the UK and Germany only enforce
it in respect of the traditional currency balances that customers have with
the exchanges; the exchanges argued that as transaction demand is much
less than investment demand, virtual currencies should be treated as assets
rather than as payment mechanisms. But in that case, why does the regulator
not require the exchanges to operate under the same rules as stockbrokers,
so that a customer’s bitcoins can’t be used for transactions, but merely sold
back to market with the proceeds being sent to the bank account used to
purchase them?
In an analysis that colleagues and I produced of exchange operations and of

the mechanics of tracing stolen Bitcoin, we also recommended applying the
Payment Services Directive, which would give exchange customers consumer
protection comparable to that with banks [117]. It is notable, for example, that
while banks have shown a lot of interest in how to block SIM swap attacks
on their customers’ phones, most cryptocurrency exchanges have shown no
interest at all – despite the fact that exchange credentials are one of the main
targets of the SIM swap gangs [1451]. Consumer protection in the world of
cryptocurrency is un�nished business, and regulatory agencies in Europe and
elsewhere are working on it.

localbitcoins.com

20.8 Crypto dreams that failed 695

20.7.6 Permissioned blockchains

The hype around cryptocurrencies and blockchains piqued commercial
interest, and from about 2015, CEOs coming back from Davos told their
IT departments they needed a blockchain. The CIOs then had to explore
whether blockchains could be created that could do useful work, without
Bitcoin’s environmental waste, illegal content and illegal actors. This led to
initiatives such as Hyperledger and the Enterprise Ethereum Alliance, with
corporate supporters developing a variety of blockchain tools and standards.
Many involve a permissioned blockchain fabric that is based on Byzantine fault
tolerance rather than proof-of-work and can still support smart contracts.
A number of them use SGX as part of their consensus mechanism, such as
Intel’s own proof of elapsed time (PoET) proposal. There are many other
proposed consensus mechanisms; for a survey, see Bano et al [166].
As an application example, JP Morgan worked on a system from 2015 that

would enable participating banks to enter mortgages on a blockchain, so that
its scripting languagewould allow traders to create futures and options of arbi-
trary complexity. They explored a number of design tradeoffs, such as between
low latency and security in adversarial settings, and how transaction privacy
can be extended to keep business logic private as well as the names of indi-
vidual participants [1423]. One conclusion was that for the vast majority of
applications, you don’t need a blockchain; a forward-secure sealed log will do.
And where a blockchain might help, you can’t use a public one. Above all,
blockchain appsmust talk to legacy systems andmust be nomore likely to cre-
ate application securitymistakes or usability hazards. There have been enough
screw-ups: for example, Argentina published its of�cial gazette (Boletin Of�-
cial) on a blockchain, and decreed it to be legally valid, whereupon someone
hacked it to publish fake news about the coronavirus [499]. Such real-world
experience appears to be taming the initial exuberance of the bubble.
Perhaps themost controversial project is Libra, a Facebook proposal to create

a payment system with its value pegged against a basket of currencies. This
was supposed to be run by a consortium of �nancial, tech and other �rms, but
has run into signi�cant opposition from central banks, resulting in key �nancial
players such as Visa, MasterCard and PayPal pulling out.

20.8 Crypto dreams that failed

A number of people have proposed electronic voting systems based on
blockchains because they’re supposedly immutable and you can build func-
tionality on them using crypto. These proposals follow over thirty years
of research into the possible use of cryptography in electronic elections to
provide a system that is simultaneously anonymous and provably accurate.

696 Chapter 20 ■ Advanced Cryptographic Engineering

In fact, during the Bitcoin boom of 2017–8, a common student project proposal
was ‘solving world peace by putting elections on the blockchain’.
Election systems claiming to use a blockchain have now been deployed in

both Russia and America, with less than impressive results. In 2018 a system
for three wards in the city of Moscow used an Ethereum blockchain for vote
tallying, but the link between vote tallying and the blockchain was broken
when two crypto vulnerabilities were �xed just before the election – and
the blockchain vanished just afterwards [783]. Also in 2018, West Virginia
became the �rst US state to allow some voters to cast their ballot using a
mobile phone app. Michael Specter, James Koppel and Danny Weitzner from
MIT reverse engineered it and found a number of vulnerabilities that would
let an attacker expose or alter votes, despite the app’s use of a blockchain,
which was irrelevant to the attacks [1814]. According to the researchers, an
attacker could create a tainted paper trail, making a reliable audit impossi-
ble – despite the selling points of blockchains including transparency and
accountability.
The idea that blockchains can solve the problems of electionsmakes the expe-

rienced security engineer despair. You can’t �x elections with this technology,
because it doesn’t tackle how they’re stolen. Parties in power are constantly
changing the rules and subverting the technology at all levels in the stack, from
voter registration through campaign funding and advertising rules through
media censorship, voter intimidation and voting schemes that can be manipu-
lated. We’ll discuss this at greater length in section 25.5.

20.9 Summary

Starting in the 1980s, many people have tried to use cryptography as a trusted
platform for some aspect of system security. The original killer app for com-
mercial cryptography was the protection of PINs in ATMs and then of card
payments more generally, as we described in Chapter 12. Many cryptography
researchers (including me) then started to hope that we could solve other eco-
nomic and social problems with cryptography. Anonymous communications
would stop censorship; anonymous digital cash would protect our privacy;
digital voting would make elections harder to rig; threshold signatures would
help us build robust internal control systems; and electronic auctions would
push back on corruption. The research papers at the Crypto and Eurocrypt con-
ferences of the period are brimming with ideas like these. A generation later,
and with a techlash of scepticism about the effects of globalised technology, it
may be time to take stock.
Our case studies teach a technical point, an economic one, and a policy one.
The technical point is that cryptographic systems aren’t magic; they have

bugs and have to be patched like anything else. Even the simplest applica-
tions, like FDE, get complex as they mature as products, and vary widely
in implementation quality. HSMs are another example of cryptosystems

20.9 Summary 697

that acquired ever more features until the features broke them, and now
require other components to block targeted attacks. SGX runs on processors
so complex that it’s vulnerable to multiple side-channel attacks, and Intel
doesn’t even consider some of them to be within its threat model: if a capable
motivated opponent can run their code on the same machine as you, you’re
basically toast. Much the same holds for blockchains, which have developed
the most complex ecosystem of all. Even the basic assumption that rational
miners are not motivated to rewrite history starts to fail when applications
create the necessary incentives. Again, a cryptocurrency can go on acquiring
features until they break it, and smart contracts can help the process along.
The economic point is that the advanced crypto mechanisms we’ve seen

deployed all come with a signi�cant cost. HSMs cost more than servers. SGX
has memory limits and a real performance overhead on context switching.
Bitcoin miners emit as much CO2 as New Zealand. Smart contracts may be
able to do some clever things but in practice are very restricted in size and
scope compared with other software. There is a �ne calculation about whether
the cost is worth it; and this calculation may become more adverse over time
as the maintenance costs mount and the system gets into technical debt.
The policy point is that advanced cryptographic mechanisms all get tangled

up with liability. If successful they seem to acquire, as part of their core
purpose, either the desire to satisfy some regulation or the desire to avoid
regulation. So the decision to deploy them, or maintain them, may involve
subtle externalities.
Hardware security modules are mandatory in card payment systems

because of card scheme rules based, ultimately, on banks’ desire to not be
liable for fraud. SGX is seen as a way to assure customers of cloud computing
services that they protect their most valuable assets against rogue sysadmins
and against intelligence agencies. Bitcoin and its many clones have become a
mechanism for circumventing everything from securities and payment law
to anti-money-laundering regulations. Real systems get built for strategic
reasons, and that tends to mean creating or entrenching power for their
creators – be it market power or political power.
As for cryptocurrencies, theyhave so far had extremevolatility, limited capac-

ity, unpredictable transaction costs, no governance, and limited transparency.
The proof-of-work mechanisms used by most of them cause CO2 emissions
that reasonable people might consider unacceptable, and their use in practice
is entangled with all sorts of criminality. While the law should defend the right
of private �rms and individuals to create value tokens such as coupons and
air miles, once these start being used as currency and institutions emerge that
behave like banks, it is reasonable for the lawgiver to treat them as such. It
is also reasonable for the lawgiver to think about carbon taxes, or to require
organisations that use blockchains to account for the CO2 they produce.
If we had to sum up the experience of forty years of trying to apply the

magic of mathematics to solve real-world problems, it would probably be
TANSTAAFL: there ain’t no such thing as a free lunch.

698 Chapter 20 ■ Advanced Cryptographic Engineering

Research problems

There are deep problems around decentralisation that cross the boundary
between cryptography and system security. Decentralised protocols tend to
fossilise; we’re still using email, DNS and BGP mechanisms from the early
1990s because of the dif�culty of changing anything. End-to-end crypto could
not be layered on top of SMTP email, despite the efforts of PGP, but needed to
wait for a new platform like Signal that could impose it by �at.
Bitcoin provides another example. The original cypherpunks ideal was a

fully decentralised payment system providing a means of exchange and
a store of value without the involvement of governments or other dominant
players such as banks. Yet the production of mining rigs has become a
monopoly, controlled by Bitmain, while the ASICs all come from TSMC.
The great majority of Bitcoin users rely on custodial exchanges to hold their
cryptocurrency, and these exchanges do most of the trading – DEXs are only
0.01% of it. The custodial exchanges have in effect become unregulated banks.
In systems such as Signal, Tor and Bitcoin, the real consensus is not crypto-

graphic but social; it’s the consensus of the developers. In Tor this is a com-
munity while in the world of cryptocurrency there are competing developer
teams working for pro�t. The security economics may be expected to be more
important than the cryptography, and we’ve already seen how smart contracts
can create application-layer incentives that could break the underlying consen-
sus layer.
What about the dependability of smart contracts in general? The computer

science approach to the API security problem has been to try to adapt
formal-methods tools to prove that interfaces are safe. There is a growing
literature on this, and even a series of workshops, but the methods can
still only tackle fairly simple APIs. Smart contracts are running into similar
problems, complicated by the dif�culty of changing them to �x bugs or to
respond to changing circumstances. It is unsurprising that many of the smart
contracts used to set up DEXs have hard-coded admin keys that enable human
intervention if need be. This is just prudent engineering, but calls into question
the ideological justi�cation of such exchanges as ‘trustless’.

Further reading

To get up to speed on Tor, a good starting point is the Tor Project’s documenta-
tion page. Formore detail on howBitcoinworks, read the Princeton book [1385]
or the JEP paper [275], while for our more detailed view on tracing stolen
Bitcoin and on cryptocurrency regulation, see [117]. For a discussion of the
interaction between centralisation and privacy, see Carmela Troncoso and col-
leagues [1914]. A survey of the state of play inmessaging apps in 2015 (the time
when Signal came together from previous apps for messaging and VOIP) can
be found at [1921].

