
CTSRDCRASH-worthy
Trustworthy

Systems
Research and
Development

CTSRD

Beyond the PDP-11:
Architectural support for a

memory-safe C abstract machine
David Chisnall†, Colin Rothwell†, Brooks Davis‡,

Robert N.M. Watson†, Jonathan Woodruff†, Munraj Vadera†,
Simon W. Moore†, Peter G. Neumann‡, and Michael Roe†

Approved for public release; distribution is unlimited. This research is sponsored by
the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contracts FA8750-10-C-0237 and FA8750-11-
C-0249. The views, opinions, and/or findings contained in this article/presentation
are those of the author(s)/presenter(s) and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S. Government.

†University of Cambridge‡SRI International

Why bring the PDP-11
into it?

• First target for C

• Flat, byte-addressable memory

• C split memory into objects purely in
software

• All widely deployed C implementations
follow this model

2

Memory safety for
compartmentalisation

• Processes are isolated by hardware (MMU),
but expensive

• Fine-grained compartmentalisation needs:

• Cheap compartments

• Fine-grained sharing

3

From compartments to
objects

• Sharing requires
pointers with enforced
bounds and permissions

• Can we use this
mechanism for every
pointer?

4

Process A Process B

Pointer Buffer

Process A

Pointer Buffer

The initial CHERI ISA

• All memory accesses via a capability
register

• ISA allows reducing capabilities

• Tagged memory protects capabilities

5

Binary compatibility

6

More compatible More safe

n64
Pure MIPS

Pure-capability
All pointers are

capabilities

Hybrid
Some pointers
are capabilities

The prototype CPU

• 64-bit MIPS-compatible ISA (≈R4000)

• CHERI ISA extensions

• Runs at 100MHz on FPGA

• Full software stack

7

Real world code

• A lot of C is implementation defined

• Most real C code does interesting things
with pointers

• Case study: tcpdump does most of them
(on untrusted data, running as root)

8

Supporting just the standard isn’t enough

Common pointer idioms

• Full list in the paper

• Around 2M lines of C code surveyed

• Thousands of instances found

• Breaking them is not acceptable!

9

Example: The mask idiom

10

// The low bit of an aligned pointer is
// always 0, so we can hide a flag in it
int *set_flag(int *b)
{
 return (int*)((intptr_t)b | 1);
}

00x1601231230

Example: The mask idiom

10

// The low bit of an aligned pointer is
// always 0, so we can hide a flag in it
int *set_flag(int *b)
{
 return (int*)((intptr_t)b | 1);
}

00x160123123000x1601231231

Example: Invalid
Intermediates

11

Buffer

Pointer

End

Example: Invalid
Intermediates

11

Buffer

Pointer

End

Pointer += x;

Example: Invalid
Intermediates

11

Buffer

Pointer

End

Pointer += x;
if (Pointer > End)

Example: Invalid
Intermediates

11

Buffer

Pointer

End

Pointer += x;
if (Pointer > End)

Pointer = End - 1;

Capabilities

12

Unforgeable

Monotonic length
and permissions

Grant rights

Base	 [64]

Length	 [64]

Permissions	 [32] Type	 [24]

Experimental	 [136]

Old CHERI Capabilities:

13

Fat Pointers

Describe a point

Add metadata

Capabilities

14

Fat Pointers

Unforgeable

Monotonic length
and permissions

Grant rights

Describe a point

+

Add metadata

Capabilities

14

Fat Pointers

Unforgeable

Monotonic length
and permissions

Grant rights

Describe a point

+

Add metadata

New CHERI Capabilities

• CHERI capabilities extended to include an
offset field

• Checks apply only on dereference

15

Base	 [64]

Length	 [64]

Permissions	 [32] Type	 [24] Reserved	 [8]

Offset	 [64]

It’s alive!

• Fully supports real-world C pointer use.

• Negligible overhead in tcpdump

• More performance evaluation in the paper

16

Conclusions

• We have shown that a capability model can
provide a memory-safe C abstract machine

• This paves the way for fine-grained
compartmentalisation of C programs

• Come and see us at IEEE Security and
Privacy for the next part of the story!

17

http://chericpu.org

http://chericpu.org

