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Why bring the PDP-11 
into it?

• First target for C

• Flat, byte-addressable memory

• C split memory into objects purely in 
software

• All widely deployed C implementations 
follow this model
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Memory safety for 
compartmentalisation

• Processes are isolated by hardware (MMU), 
but expensive

• Fine-grained compartmentalisation needs:

• Cheap compartments

• Fine-grained sharing
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From compartments to 
objects

• Sharing requires 
pointers with enforced 
bounds and permissions

• Can we use this 
mechanism for every 
pointer?

4

Process A Process B

Pointer Buffer

Process A

Pointer Buffer



The initial CHERI ISA

• All memory accesses via a capability 
register

• ISA allows reducing capabilities

• Tagged memory protects capabilities
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Binary compatibility
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More compatible More safe

n64
Pure MIPS

Pure-capability
All pointers are 

capabilities

Hybrid
Some pointers 
are capabilities



The prototype CPU

• 64-bit MIPS-compatible ISA (≈R4000)

• CHERI ISA extensions

• Runs at 100MHz on FPGA

• Full software stack

7



Real world code

• A lot of C is implementation defined

• Most real C code does interesting things 
with pointers

• Case study: tcpdump does most of them  
(on untrusted data, running as root)
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Supporting just the standard isn’t enough



Common pointer idioms

• Full list in the paper

• Around 2M lines of C code surveyed

• Thousands of instances found

• Breaking them is not acceptable!
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Example: The mask idiom
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// The low bit of an aligned pointer is  
// always 0, so we can hide a flag in it 
int *set_flag(int *b) 
{ 
 return (int*)((intptr_t)b | 1); 
} 

00x1601231230



Example: The mask idiom
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// The low bit of an aligned pointer is  
// always 0, so we can hide a flag in it 
int *set_flag(int *b) 
{ 
 return (int*)((intptr_t)b | 1); 
} 

00x160123123000x1601231231



Example: Invalid 
Intermediates
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Example: Invalid 
Intermediates
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Pointer += x;



Example: Invalid 
Intermediates
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Buffer

Pointer

End

Pointer += x;
if (Pointer > End) 



Example: Invalid 
Intermediates
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Buffer

Pointer

End

Pointer += x;
if (Pointer > End) 

Pointer = End - 1;



Capabilities
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Unforgeable

Monotonic length 
and permissions

Grant rights

Base	  [64]

Length	  [64]

Permissions	  [32] Type	  [24]

Experimental	  [136]

Old CHERI Capabilities:
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Fat Pointers

Describe a point

Add metadata



Capabilities
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New CHERI Capabilities

• CHERI capabilities extended to include an 
offset field

• Checks apply only on dereference
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Base	  [64]

Length	  [64]

Permissions	  [32] Type	  [24] Reserved	  [8]

Offset	  [64]



It’s alive!

• Fully supports real-world C pointer use.

• Negligible overhead in tcpdump

• More performance evaluation in the paper
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Conclusions

• We have shown that a capability model can 
provide a memory-safe C abstract machine

• This paves the way for fine-grained 
compartmentalisation of C programs

• Come and see us at IEEE Security and 
Privacy for the next part of the story!
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