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Abstract—We characterize the cache behavior of an in-memory
tag table and demonstrate that an optimized implementation
can typically achieve a near-zero memory traffic overhead. Both
industry and academia have repeatedly demonstrated tagged
memory as a key mechanism to enable enforcement of power-
ful security invariants, including capabilities, pointer integrity,
watchpoints, and information-flow tracking. A single-bit tag
shadowspace is the most commonly proposed requirement, as
one bit is the minimum metadata needed to distinguish between
an untyped data word and any number of new hardware-
enforced types. We survey various tag shadowspace approaches
and identify their common requirements and positive features of
their implementations. To avoid non-standard memory widths,
we identify the most practical implementation for tag storage to
be an in-memory table managed next to the DRAM controller.
We characterize the caching performance of such a tag table
and demonstrate a DRAM traffic overhead below 5% for the
vast majority of applications. We identify spatial locality on a
page scale as the primary factor that enables surprisingly high
table cache-ability. We then demonstrate tag-table compression
for a set of common applications. A hierarchical structure with
elegantly simple optimizations reduces DRAM traffic overhead to
below 1% for most applications. These insights and optimizations
pave the way for commercial applications making use of single-bit
tags stored in commodity memory.

I. INTRODUCTION

Hardware support for tagged memory has been implemented
from early days of computer architecture [1], [2], and tagged
memory is used by many research systems to enforce security
invariants in nearly unmodified programs, including track-
ing pointer integrity [3], [4], enabling unforgeable capabil-
ity tokens [2], [5]–[8], tracking programmable information-
flow [9]–[11], and even general-purpose watchpoint systems
to support both debugging and software-defined security in-
variants [12], [13]. However, the costs associated with tagged
memory have been unclear. Tag-storage access patterns are
unique, with each bit potentially representing many bits of data
memory. Although some research projects have recommended
tag storage in standard memory, and a few have developed
implementations, none have characterized single-bit tag access
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patterns sufficiently to inform implementations or further
optimizations.

For simplicity, we identify three points in the tagging design
space: no tag, a single-bit tag (SBT), or a multi-bit tag (MBT)
per word. This paper demonstrates that SBT systems can be
nearly as efficient as untagged memory. We do not attempt
to optimize MBTs, although some of the principles here will
also apply to small MBT systems.

The contributions of this paper include:
• A survey of proposed implementations of SBT systems

identifying a practical approach: an in-DRAM tag table
with a tag cache next to the DRAM controller, including
tags with metadata in data caches.

• A characterization of the dynamic workload of tag-
table caches whose hit rates can be surprisingly high,
considering that we are below the last-level cache so most
temporal and spatial locality has already been exploited.
We sweep parameter spaces and evaluate against a range
of benchmarks with diverse characteristics.

• A characterization of an elegantly simple and highly
effective compression scheme for three tag use cases,
finding that it reduces overhead for tag-memory traffic
to nearly zero for most applications.

Benchmarks run on our FPGA implementation confirm the
simulation results, and demonstrate that an SBT memory
can be implemented using commodity memory at near-zero
performance cost.

II. SINGLE-BIT TAGGED MEMORY

Tags are often stored in a shadowspace that holds M-
bits of metadata in a hidden memory for every N-bytes of
conventional visible memory. Tags in a shadowspace can pro-
vide integrity (popular for security) because the shadowspace
cannot be named by instructions from the host architecture and
is therefore naturally protected from tampering without imped-
ing program execution. Tagged memory enables a number of
ambitious and useful functions that solve difficult problems
in computer systems with high performance. We might divide
tag use cases into information flow [3], [9], [11], [14]–[16],
memory safety [4], [17]–[19], capability protection [6]–[8],
instrumentation [12], [13], and general-purpose [20]–[25].

Various tagged architectures share the requirement of a
single-bit tag (SBT) shadowspace [6]–[8], [11], [14], [16].
SBT shadowspace designs either require exactly two hardware
types (and therefore interpret the tag bit directly [11], [12]), or
use the tag bit to indicate a complex typed word (i.e., a word



with embedded metadata [5]–[8]). While some effort has been
spent optimizing large shadowspaces for MBT designs [9],
[10], [14], [15], [18], [26], we find that an SBT shadowspace
can achieve far lower overhead in a simple implementation,
and note that many applications of large tags can be imple-
mented more efficiently by embedding tag metadata within
data words with some special handling in software.

Embedded vs. External Tag Architectures

The shadowspace mechanism both isolates tags from inter-
fering with data and protects the tags from data manipulations.
While isolated metadata must be stored entirely in the shad-
owspace, protection of an arbitrary amount of metadata can
be achieved with a single bit. A system that needs an M-bit
MBT on certain words (where M is less than word size) can
simply embed this M-bit field in each word and mark these
tagged words with an SBT in the shadowspace. Hardware
will then naturally propagate the M-bit tag with the word, and
can prevent these tag bits from being overwritten by legacy
operations if the SBT is set. Clearly, these M bits are not
isolated from data, as less data is available in this word to
the application; however, these MBTs can be protected by
an SBT in the shadowspace. This approach is often used in
capability architectures to protect capabilities in memory, such
as in the IBM System/38 and AS/400 [2], the M-Machine [5],
Aries [7], Low-fat Pointers [8], and CHERI [6]. We may call
these embedded tag architectures, as they embed metadata
within the word itself, as opposed to external tag architectures
that store metadata entirely in the shadowspace.

Embedded-tag architectures require tagged words to be
explicitly handled in software. If an application can accom-
modate tags that are visible in data, embedded tags may be
used in place of a large shadowspace. The primary benefit of
embedded tag architectures is that the major cost of metadata
storage scales with use. That is, if metadata is embedded
directly in words of memory, and only when needed, metadata
consumes memory space only to the extent that it is explicitly
used. This technique is exploited by the CHERI capability
system to allow 192-bits of metadata per pointer with accept-
able overheads [6]. Intel MPX uses an external shadowspace
for similar structures but incurs a fixed 400% memory over-
head for all memory that could contain pointers [27], with
predictably high overheads. However, it should be noted that
CHERI requires extensive compiler support for wide pointers
and perturbs application binary interfaces, while Intel MPX
remains mostly undetectable in the layout of program memory.

Hardbound: Devietti et al. present an interesting hybrid
between the embedded and external approaches [19]. Hard-
bound has both an MBT shadowspace for bounds that is twice
the size of data memory, and also a SBT shadowspace to
indicate whether the bounds are actually in the shadowspace
or whether a short bound is embedded in the pointer itself.
Most bounds can be embedded in just 11 bits of the pointer,
avoiding the external lookup, allowing a very low overhead
in the common case. The Hardbound study also found that
if the SBT shadowspace grew to a 4-bit MBT shadowspace,

runtime overhead due to additional memory accesses grew by
about 250% on average for their benchmarks. The Hardbound
example suggests that the embedded-tag approach is desirable,
supporting SBT for integrity, but embedding the remainder of
the metadata in the word for performance.

Embedded tags are most commonly used in pointers. Virtual
addresses often leave some bits available for possible future
use. Furthermore, pointers are crucially important for secure
execution; all data is loaded and stored through pointers,
so nearly all data protection properties can be expressed as
pointer checks rather than checks on the data itself. CHERI,
which we use in our hardware implementation, supports a
few pointer-specific use cases (e.g., bounded code or data
pointers), while also enabling software-defined applications
(e.g., information flow, file descriptors) that may selectively
use the hardware-supported fields and semantics.

III. SINGLE-BIT TAG STORAGE

Brief consideration of the tag-storage problem and a survey
of literature yields a few potential solutions:

• width – Store tag bits in a wider physical memory, e.g.,
65-bit words.

• in-page – Store tag bits in borrowed bytes of DRAM
pages, slightly shrinking each DRAM page and skewing
the DRAM address mapping.

• dedicated – Store tag bits in a dedicated memory.
• table – Store tag bits in a table in DRAM.
The width option is ideal; historical systems such as the

Burroughs B6000 simply widened system memory [1] using
bespoke components. While we could imagine re-purposing
Error-Correcting Code (ECC) DRAM to implement a wider
memory today, ECC RAM is not economical for many appli-
cations, or else is needed for its original purpose. Furthermore,
ECC is not even available in many formats such as the com-
mon low-power double data-rate (LPDDR) standard. Today’s
environment of commodity memory with power-of-two widths
pushes us to explore more creative tag storage solutions.

The in-page option ensures that any tag access will hit in
the page opened for the data access. This limits the worst case,
but also limits tag cacheability by distributing the tag table,
limiting tag cache line width and preventing the tag cache
from exploiting broader spatial locality.

The dedicated option ensures that tag bits can always be
fetched in parallel with data fetches, logically similar to a
wider memory, but can also support caching nearby values to
eliminate tag fetches when spatial locality allows. However it
is hard to justify a dedicated memory interface and discrete
chips for a memory that is a small fraction of the size of
primary system memory.

The table option fits conveniently into existing memory
systems, but its viability depends on the cacheability and
compressibility of the tag table to reduce DRAM access
overhead. We optimize the table design in this paper, as it is
a very practical approach – although our results also inform
in-page and dedicated designs that can also exploit caching
and compression.



IV. CACHING SINGLE-BIT TAGS

Once we establish SBT storage in memory, we must settle
on a caching strategy on chip. There is some confusion and
disagreement in the tag literature concerning how tag metadata
should be cached. While exploring the many applications of
tagged memory, two major strategies have emerged to handle
the tag extension to each word of memory: the split-cache
hierarchy and the merged-cache hierarchy (Figure 1).

A. Split-Cache Hierarchy

The split hierarchy approach inserts a level-one tag cache
beside the existing instruction and data caches to respond
to tag requests [9]–[12], [20], [28]. Many of these systems
allow tag lines and data lines to mingle in the L2 cache,
naturally competing for space. Furthermore, these split-cache
designs generally maintain tags for virtual addresses, possibly
influenced by implementations in user-mode instruction-set
simulators, maintaining tables for each address space in the
address space itself [9]–[11], [19], [20]. The split-cache design
is both problematic and unnecessary for SBT architectures.

The split-cache design is problematic for both the pipeline
and for memory. It is problematic for the pipeline because
the new tag-memory access and its dependencies must be
handled separately from the data memory access. For example,
FlexiTaint and MemTracker insert two extra pipeline stages
to access the tag cache along with a new register file [11].
FlexiTaint argues that this avoids extending memory access
width and physical registers, but extending physical registers
by the one or two bits they had proposed is easier than fitting
a second memory access into the pipeline and implementing
rename and forwarding logic for another register file.

The split-cache design is equally problematic for memory.
Consistency between tag and data becomes a problem when
the two exist in separate cache lines in the memory hierarchy.
This metadata consistency challenge has spawned its own
strain of research with no obvious, efficient solution [29],
[30]. FlexiTaint also discovered a new false sharing effect
due to level-one tag cache lines that each cover a page of
memory [11]. A multi-kilobyte granularity for coherence is a
high price to pay for tagged memory.

The split-cache design is also unnecessary. As tagged mem-
ory logically extends each memory word, separate tag and
data cache lookup operations are almost entirely redundant.
Unlike DRAM, caches are not commodity logic and can
simply be widened. It is reasonable and far more efficient for
SBT systems to simply implement slightly wider memories in
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Fig. 1. Split-cache hierarchy (left) and merged-cache hierarchy(right)

the entire cache hierarchy, storing tags alongside the metadata
already held for coherence.

Virtual vs. Physical: Split-cache designs have tended
to tag virtual addresses rather than physical. Tagged virtual
memory requires a tag table for every virtual address space
with a complex multi-level structure to avoid storing tags for
unmapped space. In contrast, tagging physical memory limits
tag metadata to a fixed proportion of the available memory.
Physical tags also enable memory clients that do not support
translation to correctly handle tagged memory [31]. Physical
tags are safer, enable a static tag table, and also enable tags
to merge with the physically-indexed cache hierarchy.

While we are critical here of the split-cache design, we
note that the primary contribution of the projects referenced in
this section were compelling applications for tagged memory
rather than their tag-storage approach – with the exception
of Range Caches, which focused on tag caching exclusively
and had a more considered analysis [10]. These authors argue
that widening caches for large tags wastes storage and power
when tags can be redundant across large regions of memory
for many applications, yet for small tags they recommend a
merged hierarchy and a simple bit-vector table for storage.
We agree that a merged-cache hierarchy is clearly the best
option for SBT systems, and recommend embedding MBTs if
possible, though even some implementations of large external
MBTs have chosen a merged-cache design [24].

B. Merged-Cache Hierarchy

Merging tags with the existing CPU cache hierarchy yields
a more practical design. A number of research projects have
taken the merged-cache approach [1], [3], [4], [6], [13], [16],
[17], [21], [25]. Unlike the split-cache collection, five of these
research projects include hardware implementations that run
operating systems [4], [6], [16], [21], [25], indicating that the
merged-cache approach is indeed the more practical approach
for actual implementations.

While the merged-cache approach is simple, it is not obvi-
ous how to make memory performance fast when every data
access requires an additional tag access. The Raksha extension
of the Leon processor simply generates extra DRAM accesses
for tags on every data access [21]. For example, a data write
would generate a single external access for data and both a
read and write of the tag table to fold a few bits into a byte of
DRAM. CHERI introduces a dedicated tag cache next to the
DRAM controller to more efficiently emulate a wider physical
memory [6], with the hope that some locality is left to be
gleaned at the bottom of the cache hierarchy. The lowRISC
open-source system-on-chip project has adopted the CHERI
tag cache approach [25], and has inspired the RISC-V HDFI
extension that implements both a tag cache and rudimentary
tag-table compression [16]. Further development of the HDFI
design would particularly benefit from our characterization
of tag-table traffic. The Rocket processor used in the HDFI
work has only a 16KiB L1 data cache, and does not have
an L2 cache. The tag cache is only 1KiB and contains only
16 lines in total. While their caching performance study



shows overwhelming DRAM access overheads due to basic
tagging (37.9%-373%), the limitations of their design demand
a more thorough analysis. We provide this analysis and include
an improved implementation of compression to demonstrate
that overheads can be much lower than the published HDFI
approach and to give the root cause for these overheads.
With work progressing toward practical implementations, it
is important that we understand the caching properties of tag
tables in general, and SBT tables in particular, to inform future
tagged architectures that may be adopted commercially.

V. TAG-TABLE CACHE CHARACTERIZATION

We maintain tag bits in a simple table in DRAM with one
bit per word in memory. If these table accesses are cached,
we can take advantage of both temporal and spatial locality of
table accesses. The idea of a table cache might make us wary,
as the astute reader will realize that the table cache behaves
exactly like a last-level cache, seeing only memory accesses
that have missed in the upper levels of cache hierarchy, and
that last-level caches generally have poor hit rates. A 2MB L3
cache behind a 256KB L2 cache was found to have an average
miss rate of 48% in SPEC2006, for example [32]. Such a
miss rate would be disastrous for our tag-table cache as this
would imply at least a 48% increase in DRAM transactions
and potentially incur a similar penalty in average latency.

A. Dynamic Tag-Table Cacheability

To understand dynamic SBT table cache behavior, we have
designed an experiment to model a tagged memory using
DRAM traces from unmodified applications. Any trace of
DRAM data accesses implies a hypothetical trace of shad-
owspace table accesses to provide the tags for each data line.
For a given word width, this caching behavior is identical for
any SBT scheme as all schemes simply emulate a memory
that is wider by one bit.

We instrumented gem5 to trace all accesses to DRAM and
replayed these traces against a set of simulated cache structures
with varying parameters. Here we tag 64-bit words, giving us
a tag cache amplification factor of 64. For example, a 1KiB
tag cache will cover 64KiB of data memory and should behave
like a data cache of that size. We have selected two ARMv8
systems for this analysis. The small system has a single core
with a 256KiB L2 last-level data cache, and the big system
has four cores with an 8MiB L3 last-level data cache with
prefetching enabled. For this analysis we select two benchmark
loads. Earley-Boyer of the Octane suite under Google V8
was chosen because we have found that Javascript has very
unfavorable pointer distributions (which is significant when
compression is applied) and because the Earley-Boyer test is
particularly unfavorable among the tests of the Octane suite, as
demonstrated in Figure 5. Each instance of Earley-Boyer under
Google V8 uses approximately 60MiB of memory which is
almost entirely a large heap with complex access patterns
yielding poor cacheability. In contrast, FFMPEG is a media-
centric C program with fewer pointers and more regular mem-
ory access patterns and also has a data set of approximately
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60MiB. We run three instances of Earley-Boyer in the four-
core case to ensure all cores are generating traffic, expecting
the V8 engine to do book-keeping on the fourth core, but
maintain a single instance of FFMPEG as it is multithreaded.
The three independent instances of Earley-Boyer particularly
allow us to stress caches, disrupting locality that might be
gleaned by the tag cache. Nevertheless, we discover that a
tag cache can achieve much higher hit rates than a typical
last-level cache.

Figure 2 shows DRAM transaction overhead versus cache
size, using a standard 64-byte line size in the tag cache. All of
our simulations used 8-way set-associative, physically-indexed
tag caches. We note that for even modestly sized caches we
achieve a surprisingly low transaction overhead. For example,
a tag cache size of 128KiB covers the same amount of data
as the 8MiB L3 cache that it serves and yet manages to hit
over 90% of the time, inflating DRAM accesses by less than
10% for both fills and writebacks.

If we choose 5% as a threshold for acceptable DRAM traffic
overhead, we need a 32KiB tag cache for the small system
to serve the 256KiB last-level data cache, and a 256KiB tag
cache for the big system to serve the 8MiB last-level data
cache. Note that the tag cache for the big system only covers
twice as much data as its last-level data cache. At these sizes,
with 64-byte lines, Earley-Boyer and FFMPEG have 4.91%
and 1.31% overheads respectively for the small system, and
3.72% and 0.50% for the big system.

To uncover the reason for these unusually high hit rates,



Figure 3 graphs the temporal and spatial hits in the tag cache
as the line size grows for the Earley-Boyer big case (256KiB
tag cache, 8-way associative). Spatial hits are on tags that
have not previously been accessed in the cache, i.e. that have
been brought in due to a miss on a nearby tag. Temporal
hits are on tags that have previously been accessed and are
re-accessed due to lack of capacity in the upper layer of
cache. The graph begins with a tag cache line that covers one
data line. As the line size increases, spatial hits continue to
increase consistently until we reach lines of 512 tags (64 bytes)
which each cover a 4KiB page of data. Bigger lines benefit
spatial hits more then they harm temporal hits until lines of
approximately 4096 tags (512 bytes) which each cover 8 pages
of data memory. After that point, no more spatial locality
seems to be harvested from larger lines, but the number of
temporal hits still decreases, harming overall hit-rate. Thus
the tag cache can exploit spatial locality at page granularities
to reduce overhead from an expected 50% of DRAM traffic
to less than 5%, even for an unusually small capacity.

Silent-Write Elimination: Writes that rewrite the existing
value, or silent writes, are more common for tags than for
data and are more problematic. Silent tag writes are common
since tag metadata is often unchanged through data writes,
e.g., when updating untagged data. Tag lines are also much
more likely to be dirty than data lines, as the coarse line
granularity increases the probability that some bit will be
written. Our simulated tag cache eliminates these silent writes.
This optimization reduces dirty lines from 80% to 4% in the
pointer-sparse FFMPEG case, and from 60% to around 30%
for the pointer-heavy Earley-Boyer case. This feature makes
writeback traffic dependent on the value of the tags. Figure 8
includes several use cases, one of which sees a 30% reduction
of traffic overhead without compression due to tags changing
less frequently.

B. Hardware Implementation

We rebuilt the tag controller engine in the open-source
CHERI processor (http://www.bericpu.org/), and added perfor-
mance counters to the CHERI cache. CHERI is instantiated
with 32KiB L1 caches and a 256KiB L2 cache, all 4-way set
associative with 128-byte lines. CHERI requires a tag bit for
each 256-bit word, resulting in a natural caching amplification
factor of 256. Our new tag controller includes a lookup engine
backed by a 32KiB 4-way set-associative cache with 128-byte
lines, matching the burst size in the CHERI system. Since
each cached tag bit covers 256 bits of data memory, each 128-
byte line in the tag-table cache provides tags for 32 kilobytes
of data memory. We restricted ourselves to a standard cache
instantiation for the tag controller which did not allow silent-
write elimination so this feature was not evaluated in hardware.

Benchmark results for this basic FPGA implementation are
shown as the Uncompressed case in Figure 9. All of our
benchmarks were compiled to use 256-bit CHERI capabilities
for all pointers, though the tag values do not affect hit rates for
the uncompressed case. Our benchmarks include a selection of
Octane benchmarks running under the Duktape interpreter and

of MiBench benchmarks running natively. DRAM overhead
was below 3% for programs with data sets contained in the
multi-megabyte reach of the tag cache. The Splay benchmark
with a working set of over 100MB still maintained an overhead
of less than 8%.

VI. TAG-TABLE CACHE COMPRESSION

Tag-table compression reduces cache footprint by taking
advantage of likely patterns in adjacent tag-bit values. Our
focus is on compression for caching rather than reducing the
size of the table in memory, as the table itself occupies a
very small proportion of DRAM, and the full capacity is
required in the worst case. As compressibility depends heavily
on probable distributions, we must select a tag use case to gain
concrete insights into compressibility.

Three prominent approaches have been taken for tag com-
pression. The Range Cache approach compressed arbitrary
ranges of tags with the same value, and was particularly useful
for large MTB systems [10]. The Multi-granularity tagging
approach indicates the presence or absence of tags using
the TLB, eliminating tag lookup for the majority of cases.
Most of these systems keep tags on virtual memory such that
tag storage is entirely under software control [9], [15], [33].
Our approach is a fully hardware-managed1 hierarchical tag
table in physical memory that performs compression while
emulating a flat tag space.

A. Hierarchical Tag Table

To optimize for regions that contain no tags, we may
implement a two-level table where a bit in the root level
indicates whether any bits are set in a group of leaf level
bits. In the example in Figure 4, one bit in the root level can
be cleared to indicate that 512 bits in the leaf level are all zero
and need not be accessed on a read or on a write of zero. We
refer to the group granularity as the grouping factor “GF”, as
this is the factor by which the tag footprint can be compressed
for groups with no pointers. All tag-table lookups must access
the root level, but only addresses that lie in a group including a
tagged word must access the leaf level. It is simple to maintain
such a hierarchy. Each time we clear a tag bit in the leaf level,
we must check whether the rest of the tags in the group are
zero, clearing the bit in the root level if this is the case. On
boot up, we must clear only the root level of the table to clear
the tag bits on all of memory.

root tabletag-cache line

leaf table

1 bit
tag-cache line

512 bits

. . .

. . .

Fig. 4. Hierarchical table structure for grouping factor of 512

Crucially, this scheme eliminates table-cache pressure for
applications that do not use tagged pointers. In addition, this

1WHISK demonstrates that the root level of a two-level tag table can be
managed in software at the cost of flushing tag caches on root updates [31].



scheme can greatly reduce the cache footprint of sparse tags.
While we found that a two-level table performs well, our
simulator and FPGA implementations are parameterized for
tables with arbitrary levels and grouping factors at each level
to enable a thorough investigation.

Empty Line Fabrication: Our simulated tag controller can
also fabricate lines in the tag cache when a leaf group becomes
non-zero for the first time, and destroy it without writing back
when the group becomes fully zero, avoiding accesses to the
backing memory. This optimization requires that eliminated
groups correspond precisely to tag cache lines, further enforc-
ing the line-group principle we will present in Section VI-C.
While this optimization reduces cache fills by 0.5-75% for
our benchmarks, depending on pointer density, our FPGA tag
controller implementation instantiates a standard cache which
was not able to implement this behavior.

B. Static Memory Analysis

Tiwari et al. observed strong patterns for MBTs and de-
veloped the range cache in response [10]; we find that SBTs
also allow efficient compression of contiguous regions with
a hierarchical structure. To study typical pointer distributions,
we core-dump programs (running on x86-64 under FreeBSD)
near peak memory usage to provide a static memory map. Our
core-dump analysis tool identifies likely pointers by matching
64-bit words against a list of all allocated virtual addresses for
the process, thereby deriving an upper limit on the number and
distribution of pointers to be tagged. False positives should be
rare, as it is unlikely that non-pointer values will match a
valid 64-bit address. To assess compressibility of a program’s
tag table, we analyzed what percentage of tag groups have at
least one pointer at various group granularities. As shown on
Figure 5, we discovered that, for many C-language applica-
tions, fewer than 10% of the groups contained pointers, even
for large groups (large GF). For these applications, more than
90% of the tag data could be eliminated from the working
set, and the reach of a tag cache would be amplified by a
factor of more than 10 above the natural amplification factor
of 64 (or 256 for CHERI with a tag for every 256-bits) . For
applications in higher-level languages, such as Javascript and
C++, we saw a much higher concentration of pointers, with
some approaching as much as 25%, with over 75% of the
groups containing pointers for very large GFs. Nevertheless,
even in pointer-rich applications, we find that pointers tend to
cluster together, i.e., the grouped pointer densities are lower
than for a random distribution. Figure 6 allows us to compare
with a 1% random pointer distribution which surpasses all the
application samples at large GFs.

C. Dynamic Hierarchical Cache Study

We return to our gem5 trace engine to study dynamic
caching behavior of our compressed tables. We compared
each DRAM data write against a list of valid virtual ad-
dresses compiled from a trace of TLB misses to identify
pointers in DRAM traffic. This pattern of virtual addresses
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Fig. 6. Measured pointer densities vs. a 1% random distribution

written to memory constitutes a trace of hypothetical tag-
table traffic that slightly overestimates pointer density due
to false pointer matches. By replaying this trace of tag-table
traffic against a hierarchical table engine backed by a standard
cache, we are able to simulate dynamic cache behavior for
a hierarchical table structure. Figure 7 reports DRAM traffic
overhead without compression and for a hierarchical table
with a GF of 512, according to the line-group principle
from Section VI-C. For this study we include our primary
example of tagging all pointers, and introduce two additional
tag use cases: code pointers, and zeroes. The Code pointers
case models control-flow integrity systems that tag only code
pointers [3], [4], and the zeroes case tags zeroed cache lines
to avoid accessing DRAM when a cache line is entirely zero,
improving performance and power.

The results in Figure 7 show that data-centric programs
such as FFMPEG see pointer-tag misses collapse to very near
zero when using compression, while pointer-heavy programs
such as Earley-Boyer running under Google’s V8 engine see
more measured improvements proportional to those predicted
by the static study. When tagging only code pointers, the hier-
archical compression successfully eliminates additional leaf-
level groups compared to the all-pointer case, with overhead
collapsing in all but the Earley-Boyer big case.

The zeroes case has the interesting implication that such
a system could cause a net reduction in DRAM traffic.
Identifying and eliminating all loads and stores of zeroed lines
to DRAM costs less than 0.2% DRAM traffic overhead for
these cases, and zeroed lines comprised between 1.5% and
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Note: MiBench overheads with compression are approximately zero

2.5% of DRAM traffic.

Line-group Principle: The optimal grouping factor (GF)
will almost always be equal to the cache line size. We
may call this the line-group principle. Figure 8 shows that
traffic overhead for our most demanding benchmark, Earley-
Boyer big, decreases as the grouping factor approaches the
line size, 64 bytes (512 bits). After this point, the overhead
sometimes increases. This is due to a relationship between
the compression granularity and the caching granularity. The
hierarchical mechanism reduces the size of the tag working
set by eliminating groups of tags. However, the cache is filled
on a line granularity and no group smaller than a line can be
usefully omitted from the cache. Therefore, we cannot take
practical advantage of grouping factors that are smaller than
the line size of the cache. For example, an analysis of pointer
density may indicate that a GF of 8 will yield a smaller tag

working set than a GF of 512, but the cache will still fetch on a
line granularity and the “eliminated” groups will still consume
cache space if they share a line with an active group.

Nevertheless we may desire a finer granularity for the
grouping factor to simplify table maintenance. For example,
in our FPGA implementation we have chosen a GF equal to
the word size of our cache, 256 bits, rather than the line size
(1024 bits). This allows us to check if a leaf group is zero in
a single cycle when a tag is cleared, so that we can clear the
bit for that group in the higher level.

D. Performance Results from Hardware Implementation

We extended the tag-table manager for the CHERI open-
source prototype with a parameterizable hierarchical lookup
engine. We used a two-level table with a GF of 256. We
compiled our benchmarks to use tagged capabilities for all
pointers, providing a real tag working set.

For the MiBench suite in C, the cacheability of the table
is amplified to the extent that the working set fits easily
into the table cache, and overheads entirely collapse. The
pointer densities of the MiBench benchmarks are well below
5% even with large GFs according to Figure 5, giving us
a cache amplification factor of over 20. Our tag cache of
32KiB could therefore have an amplified capacity of 640KiB
for tags. Such a cache would cover 160MiB of data memory
due to the natural amplification factor of 256 for CHERI. For
the Javascript applications that do not collapse due to both
pointer density and working set size, the miss rate is at least
halved. We emphasize that we selected Javascript as a difficult
case for pointer compression, and Splay and Earley-Boyer,
because they extensively exercise the pointer-rich Javascript
heap. Gbemu and pdfjs are typical of the rest of the Octane
suite and have better tag caching properties.

The hierarchical instantiation of the tag controller on FPGA
consumed 15.4% more logic elements than the flat instan-
tiation, averaged across 10 builds. Memory resources were
identical since the tag cache size remained constant. The
overhead consists of comparison logic and buffering registers
to maintain the hierarchical structure. FPGAs have peculiar
logic consumption patterns compared to ASIC so this overhead
should not be considered representative of hierarchical tag
caches in general. A 32KiB cache in a 14nm ASIC would
be on the order of 0.1mm2 [34]; a small fraction of a modern
memory controller.

VII. CONCLUSION

Tagged memories are commercially viable for mass-market
implementations. Tagged architectures have long held promise
for enforcement of strong security invariants, but their adop-
tion has been hindered by a lack of understanding of their
affect on memory subsystems. We have characterized the
straightforward design of a single-bit tag table in physical
memory cached at the memory controller, measuring a less
than 8% DRAM traffic overhead on an FPGA implementation
despite pessimistic intuitions due to poor performance of last-
level caches. Using simulations, we demonstrated that this



surprising performance is due to spatial locality on a page
scale that is enabled by cache lines that hold tags for kilobytes
of data.

To push overheads down further, we exploited patterns in
tables of single-bit tags that make them amenable to compres-
sion. This compression allowed us to avoid table accesses for
regions that do not use tags, or that use tags only briefly, to
bring the common case well below 1% overhead. Crucially,
applications that do not use tags see almost zero DRAM
traffic overhead. With such low overheads demonstrated for
single-bit shadowspace implementations, researchers should
be encouraged to further develop applications relying on small
tags and industry should be encouraged to attack security
challenges directly by enforcing non-bypassable security prop-
erties enabled by tagged memory.
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