Feedback Control Theory

a Computer System's Perspective

- Introduction
 - What is feedback control?
 - Why do computer systems need feedback control?
- Control design methodology
 - System modeling
 - Performance specs/metrics
 - Controller design
- Summary

Control

- Applying input to cause system variables to conform to desired values called the <u>reference</u>.
 - Cruise-control car: f_engine(t)=? → speed=60 mph
 - ◆ E-commerce server: Resource allocation? → T_response=5 sec
 - ◆ Embedded networks: Flow rate? → Delay = 1 sec
 - Computer systems: QoS guarantees

Open-loop control

- Compute control input without continuous variable measurement
 - Simple
 - Need to know EVERYTHING ACCURATELY to work right
 - Cruise-control car: friction(t), ramp_angle(t)
 - ◆ E-commerce server: Workload (request arrival rate? resource consumption?); system (service time? failures?)
- Open-loop control fails when
 - We don't know everything
 - We make errors in estimation/modeling
 - Things change

Feedback (close-loop) Control

Feedback (close-loop) Control

- Measure variables and use it to compute control input
 - More complicated (so we need control theory)
 - Continuously measure & correct
 - + Cruise-control car: measure speed & change engine force
 - + Ecommerce server: measure response time & admission control
 - → Embedded network: measure collision & change backoff window
- Feedback control theory makes it possible to control well even if
 - We don't know everything
 - We make errors in estimation/modeling
 - Things change

Why feedback control? Open, unpredictable environments

- Deeply embedded networks: interaction with physical environments
 - Number of working nodes
 - Number of interesting events
 - Number of hops
 - Connectivity
 - Available bandwidth
 - Congested area
- Internet: E-business, on-line stock broker
- Unpredictable off-the-shelf hardware

Why feedback control? We want QoS guarantees

- Deeply embedded networks
 - Update intruder position every 30 sec
 - Report fire <= 1 min</p>
- E-business server
 - Purchase completion time <= 5 sec
 - Throughput >= 1000 transaction/sec
- The problem: provide QoS guarantees in open, unpredictable environments

Advantage of feedback control theory

- Adaptive resource management heuristics
 - Laborious design/tuning/testing iterations
 - Not enough confidence in face of untested workload
- Queuing theory
 - Doesn't handle feedbacks
 - Not good at characterizing transient behavior in overload
- Feedback control theory
 - Systematic theoretical approach for analysis and design
 - Predict system response and stability to input

Outline

- Introduction
 - What is feedback control?
 - Why do today's computer systems need feedback control?
- Control design methodology
 - System modeling
 - Performance specs/metrics
 - Controller design
- Summary

Control design methodology

System Models

- **Linear** vs. non-linear (differential eqns)
- **Deterministic** vs. Stochastic
- **Time-invariant** vs. Time-varying
 - Are coefficients functions of time?
- **Continuous-time** vs. Discrete-time
- System ID vs. First Principle

Dynamic Model

- Computer systems are dynamic
 - Current output depends on "history"
- Characterize relationships among system variables
 - Differential equations (time domain)

$$a_2 y(t) + a_1 y(t) + a_0 y(t) = b_1 u(t) + b_0 u(t)$$

Transfer functions (frequency domain)

$$Y(s) = G(s)U(s)$$

$$G(s) = \frac{b_1 s + b_0}{a_2 s^2 + a_1 s + a_0} = \frac{c_1}{s - p_1} + \frac{c_2}{s - p_2}$$

Block diagram (pictorial)

Example Utilization control in a video server

- Periodic task T_i corresponding to each video stream i
 - c[i]: processing time, p[i]: period
 - Stream i's requested CPU utilization: u[i]=c[i]/p[i]
- Total CPU utilization: $U(t)=\Sigma_{\{k\}}u[k]$, $\{k\}$ is the set of active streams
- Completion rate: $R_c(t) = (\Sigma_{\{kc\}} u[m])/\Delta t$, where $\{m\}$ is the set of terminated video streams during $[t, t+\Delta t]$
 - Unknown
- Admission rate: $R_a(t) = (\Sigma_{\{ka\}}u[j])/\Delta t$, where $\{j\}$ is the set of admitted streams during $[t, t+\Delta t]$
- Problem: design an admission controller to guarantee U(t)=U_s regardless of R_c(t)

Model Differential equation

• Error: $E(t)=U_s-U(t)$

• Model (differential equation): $U(t) = \int_{\tau=0}^{t} (R_a(\tau) - R_c(\tau)) d\tau$

• Controller C? $E(t) \Rightarrow R_a(t)$

A Diversion to Math System representations

- Three ways of system modeling
- Time domain: convolution; differential equations.

u(t)
$$y(t) = g(t) * u(t) = \int_0^t g(t-\tau)u(\tau)d\tau$$

• s (frequency) domain: multiplication

$$U(s) \longrightarrow G(s) \longrightarrow Y(s) = G(s)U(s)$$

Block diagram: pictorial

s-domain is a simple & powerful "language" for control analysis

A Diversion to Math Laplace transform

Laplace transform of a signal f(t)

$$F(s) = L[f(t)] = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

where $s=\sigma+i\omega$ is a complex variable.

- Laplace transform is a translation from time-domain to s-domain
 - Differential equation ⇒ Polynomial function

$$a_{2} y(t) + a_{1} y(t) + a_{0} y(t) = b_{1} u(t) + b_{0} u(t)$$

$$\Leftrightarrow Y(s) = \frac{b_{1} s + b_{0}}{a_{2} s^{2} + a_{1} s + a_{0}} \bullet U(s)$$

A Diversion to Math Laplace transform

Basic translations

```
• Impulse function f(t)=\delta(t) \Leftrightarrow F(s)=1
```

- Step signal $f(t)=a\cdot 1(t) \Leftrightarrow F(s)=1/s$
- Ramp signal $f(t)=a \cdot t \Leftrightarrow F(s)=a/s^2$
- Exp signal $f(t)=e^{at} \Leftrightarrow F(s)=1/(s-a)$
- Sinusoid signal $f(t)=\sin(at) \Leftrightarrow F(s)=a/(s^2+a^2)$

Composition rules

- Linearity L[af(t)+bg(t)] = aL[f(t)]+bL[g(t)]
- Differentiation L[df(t)/dt] = sF(s) f(0)
- Integration $L[\int_t f(\tau) d\tau] = F(s)/s$

A Diversion to Math Transfer function

Modeling a linear time-invariant (LTI) system

•
$$G(s) = Y(s)/U(s) \Rightarrow Y(s) = G(s)U(s)$$

E.g., a second order system with *poles* p₁ and p₂

$$G(s) = \frac{b_1 s + b_0}{a_2 s^2 + a_1 s + a_0} = \frac{c_1}{s - p_1} + \frac{c_2}{s - p_2}$$

A Diversion to Math Poles and Zeros

■ The response of a linear time-invariant (LTI) system

$$F(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

$$= K \frac{\prod_{i=1}^m (s - z_i)}{\prod_{i=1}^n (s - p_i)} = \frac{C_1}{s - p_1} + \frac{C_2}{s - p_2} + \dots + \frac{C_n}{s - p_n}$$

$$\Rightarrow f(t) = \sum_{i=1}^n C_i e^{p_i t}$$

{p_i} are *poles* of the function and decide the system behavior

A Diversion to Math

Time response vs. pole location

•
$$f'(t) = e^{pt}$$
, $p = a+bj$

A Diversion to Math Block diagram

- A pictorial tool to represent a system based on transfer functions and signal flows
- Represent a feedback control system

Back to Our utilization control example

- Error: E(t)=U_s-U(t)
- Model (differential equation): $U(t) = \int_{\tau=0}^{t} (R_a(\tau) R_c(\tau)) d\tau$
- Controller C? $E(t) \Rightarrow R_a(t)$

Model

Transfer func. & block diag.

CPU is modeled as an integrator

$$U(t) = \int_{0}^{t} (R_a(\tau) - R_c(\tau)) d\tau \Leftrightarrow U(s) = \frac{R_a(s) - R_a(s)}{s} \Leftrightarrow G_o(s) = \frac{1}{s}$$

- In puts: reference $U_s(s) = U_s/s$; completion rate $R_c(s)$
- Close-loop system transfer functions
 - $U_s(s)$ as input: $G_1(s) = C(s)G_o(s)/(1+C(s)G_o(s))$
 - $R_c(s)$ as input: $G_2(s) = G_o(s)/(1+C(s)G_o(s))$
- Output: $U(s)=G_1(s)U_s/s+G_2(s)R_c(s)$

Control design methodology

Design Goals Performance Specifications

- Stability
- Transient response
- Steady-state error
- Robustness
 - Disturbance rejection
 - Sensitivity

Performance Specs: bounded input, bounded output stability

- BIBO stability: bounded input results in bounded output.
 - A LTI system is BIBO stable if all poles of its transfer function are in the LHP (∀p_i, Re[p_i]<0).

$$Y(s) = G(s)U(s) = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} = \frac{C_1}{s - p_1} + \frac{C_2}{s - p_2} + \dots + \frac{C_n}{s - p_n}$$

$$\Rightarrow y(t) = \sum_{i=1}^{n} C_i e^{p_i t}$$

Note:
$$C_i e^{p_i t} \xrightarrow{t \to \infty} \infty$$
 if $\text{Re}[p_i] > 0$

Performance Specs Stability

Performance specifications

Example: Control & Response in an Email Server (IBM)

Performance Specs Steady-state error

Steady state (tracking) error of a stable system

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{t \to \infty} (r(t) - y(t))$$

r(t) is the reference input, y(t) is the system output.

- How accurately can a system achieve the desired state?
- Final value theorem: if all poles of sF(s) are in the open left-half of the s-plane, then

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$

Easy to evaluate system long term behavior without solving it

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s)$$

Performance Specs Steady-state error

Steady state error of a CPU-utilization control system

Performance Specs Robustness

- Disturbance rejection: steady-state error caused by external disturbances
 - Can a system track the reference input despite of external disturbances?
 - Denial-of-service attacks
- Sensitivity: relative change in steady-state output divided by the relative change of a system parameter
 - Can a system track the reference input despite of variations in the system?
 - Increased task execution times
 - Device failures

Performance Specs Goal of Feedback Control

- Guarantee stability
- Improve transient response
 - Short settling time
 - Small overshoot
- Small steady state error
- Improve robustness wrt uncertainties
 - Disturbance rejection
 - Low sensitivity

Control design methodology

Controller Design PID control

Proportional-Integral-Derivative (PID) Control

• Proportional Control
$$x(t) = Ke(t)$$
 \Leftrightarrow $C(s) = K$

• Proportional Control
$$x(t) = Ke(t) \Leftrightarrow C(s) = K$$
• Integral control $x(t) = KK_i \int_0^t e(\tau) d\tau \Leftrightarrow C(s) = \frac{KK_i}{s}$
• Derivative control $x(t) = KK_d e(t) \Leftrightarrow C(s) = KK_d s$

• Derivative control
$$x(t) = KK_d e(t) \Leftrightarrow C(s) = KK_d s$$

Classical controllers with well-studied properties and tuning rules

Controller Design CPU Utilization Control

CPU is modeled as an integrator

$$U(t) = \int_{c}^{t} (R_a(\tau) - R_c(\tau)) d\tau \Leftrightarrow U(s) = \frac{R_a(s) - R_a(s)}{s} \Leftrightarrow G_o(s) = \frac{1}{s}$$

$$\text{If pouts: set-point } U_s(s) = U_s/s \qquad \text{; task completion } R_c(s)$$

- Close-loop system transfer functions
 - $U_s(s)$ as input: $G_1(s) = C(s)G_o(s)/(1+C(s)G_o(s))$
 - $R_c(s)$ as input: $G_2(s) = G_o(s)/(1+C(s)G_o(s))$
- C(s)=? to achieve zero steady-state error: $U(t) \rightarrow U_s$

Proportional Control Stability

- Proportional Controller
 - $r_a(t) = Ke(t); C(s) = K$
- Transfer functions
 - U_s /s as input: $G_1(s) = K/(s+K)$
 - $R_c(s)$ as input: $G_2(s) = 1/(s+K)$
- Stability
 - Pole $p_0 = -K < 0 \Leftrightarrow System is BIBO stable iff K>0$
 - Note: System may shoot to 100% if K<0!

Proportional Control Steady-state error

- Assume completion rate $R_c(t)$ keeps constant for a time period longer than the settling time: $R_c(s)=R_c/s$
- System response is

$$U(s) = \frac{U_s G_1(s)}{s} + \frac{R_c G_2(s)}{s} = \frac{K U_s - R_c}{s(s+K)}$$

Compute steady-state err using final value theorem,

$$\lim_{t\to\infty} U(t) = \lim_{s\to 0} sU(s) = \lim_{s\to 0} \frac{KU_s - R_c}{s + K} = U_s - \frac{R_c}{K} \qquad \Rightarrow e_{ss} = -\frac{R_c}{K} < 0$$

- P-control cannot achieve the desired CPU utilization U_s ; instead it will end up lower by R_c/K Oops!
- The larger the proportional gain K is, the closer will CPU utilization approach to U_s

CPU Utilization Proportional Control

Proportional-Integral Control Stability

Proportional Controller

•
$$r_a(t) = K(e(t) + K_i \cdot \int_t e(\tau) d\tau)$$
 $C(s) = K(1 + K_i/s)$

Transfer functions

- U_s /s as input: $G_1(s) = (Ks+KK_i)/(s^2+Ks+KK_i)$
- $R_c(s)$ as input: $G_2(s) = s/(s^2 + Ks + KK_i)$
- Stability
 - Poles Re[p₀]<0, Re[p₀]<0
 - ⇔ System is BIBO stable *iff* K>0 & K_i>0

Proportional Control Steady-state error

- Assume completion rate $R_c(t)$ keeps constant for a time period longer than the settling time: $R_c(s)=R_c/s$
- System response is

$$U(s) = \frac{U_s G_1(s)}{s} + \frac{R_c G_2(s)}{s} = \frac{(KU_s + R_c)s + KK_i U_s}{s(s^2 + Ks + KK_i)}$$

Compute steady-state err using final value theorem,

$$\lim_{t \to \infty} U(t) = \lim_{s \to 0} s U(s) = \lim_{s \to 0} \frac{(KU_s + R_c)s + KK_i U_s}{s^2 + Ks + KK_i} = U_s \qquad \Rightarrow e_{ss} = 0$$

- PI control can accurately achieve the desired CPU utilization $U_s \sqrt{}$
- Control analysis gives design guidance

CPU Utilization Proportional-Integral Control

Controller Design Summary & pointers

- PID control: simple, works well in many systems
 - P control: may have non-zero steady-state error
 - I control: improves steady-state tracking
 - D control: may improve stability & transient response
- Linear continuous time control
 - Root-locus design
 - Frequency-response design
 - State-space design
 - G. F. Franklin et. al., Feedback control of dynamic systems

Discrete Control

- More useful for computer systems
- Time is discrete; sampled system
 - denoted k instead of t
- Main tool is z-transform
 - $f(k) \rightarrow F(z)$, where z is complex
 - Analogous to Laplace transform for s-domain

$$\mathbf{Z}[f(k)] = F(z) = \sum_{k=0}^{\infty} f(k)z^{-k}$$

Discrete Modeling

- Difference equation
 - + $V(m) = a_1 V(m-1) + a_2 V(m-2) + b_1 U(m-1) + b_2 U(m-2)$
 - + z domain: $V(z) = a_1 z^1 V(z) + a_2 z^2 V(z) + b_1 z^1 U(z) + b_2 z^2 U(z)$
 - + Transfer function $G(z) = (b_1z + b_2)/(z^2-a_1z a_2)$
- V(m): output in m^{th} sampling window
- U(m): input in m^{th} sampling window
- Order n: #sampling-periods in history affects current performance
- SP = 30 sec, and n = 2 → Current system performance depends on previous 60 sec

Root Locus analysis of Discrete Systems

- Stability boundary: |z|=1 (Unit circle)
- Settling time = distance from Origin
- Speed = location relative to Im axis
 - Right half = slower
 - Left half = faster

Effect of discrete poles

Intuition: $z = e^{Ts}$

Feedback control works in CS

- U.Mass: network flow controllers (TCP/IP RED)
- IBM: Lotus Notes admission control
- UIUC: Distributed visual tracking
- UVA
 - Web Caching QoS
 - Apache Web Server QoS differentiation
 - Active queue management in networks
 - Processor thermal control
 - Online data migration in network storage (with HP)
 - Real-time embedded networking
 - Control middleware
 - Feedback control real-time scheduling

Advanced Control Topics

- Robust Control
 - Can the system tolerate noise?
- Adaptive Control
 - Controller changes over time (adapts)
- MIMO Control
 - Multiple inputs and/or outputs
- Stochastic Control
 - Controller minimizes variance
- Optimal Control
 - Controller minimizes a cost function of error and control energy
- Nonlinear systems
 - Neuro-fuzzy control
 - Challenging to derive analytic results

Issues for Computer Science

- Most systems are non-linear
 - But linear approximations may do
 - + eg, fluid approximations
- First-principles modeling is difficult
 - Use empirical techniques
- Mapping control objectives to feedback control loops
 - ControlWare paper
- Deeply embedded networking
 - Massively decentralized control problem
 - Modelling
 - Node failures