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Control

m  Applying input to cause system variables to conform to desired values called
the reference.

Cruise-control car: f_engine(t)=? - speed=60 mph
E-commerce server: Resource allocation? - T_response=5 sec
Embedded networks: Flow rate? - Delay = 1 sec

Computer systems: QoS guarantees



Open-loop control

m Compute control input without continuous variable measurement
Simple
Need to know EVERYTHING ACCURATELY to work right
+ Cruise-control car: friction(t), ramp_angle(t)

+ E-commerce server: Workload (request arrival rate? resource
consumption?); system (service time? failures?)

m Open-loop control fails when
We don’t know everything

We make errors in estimation/modeling
Things change



Feedback (close-loop) Control

Controller

control
function

control
mnput

——]| A ctuator |—>

Monitor

sample

——

reference

Controlled System

manipulated
variable

controlled
variable




Feedback (close-loop) Control

m Measure variables and use it to compute control input

More complicated (so we need control theory)

Continuously measure & correct
+ Cruise-control car: measure speed & change engine force
+ Ecommerce server: measure response time & admission control
+ Embedded network: measure collision & change backoff window

m Feedback control theory makes it possible to control well even if
We don’t know everything

We make errors in estimation/modeling
Things change



Why feedback control?
Open, unpredictable environments

m Deeply embedded networks: interaction with physical environments

Number of working nodes
Number of interesting events
Number of hops
Connectivity
Available bandwidth
Congested area
m Internet: E-business, on-line stock broker

m Unpredictable off-the-shelf hardware



Why feedback control?
We want QoS guarantees

m Deeply embedded networks
Update intruder position every 30 sec
Report fire <= 1 min

m E-business server
Purchase completion time <=5 sec
Throughput >= 1000 transaction/sec

m The problem: provide QoS guarantees in open, unpredictable
environments




Advantage of feedback control theory

m Adaptive resource management heuristics

Laborious design/tuning/testing iterations

Not enough confidence in face of untested workload
® Queuing theory

Doesn’t handle feedbacks

Not good at characterizing transient behavior in overload
m Feedback control theory

Systematic theoretical approach for analysis and design
Predict system response and stability to input
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System Models

m Linear vs. non-linear (differential eqns)
m Deterministic vs. Stochastic

m Time-invariant vs. Time-varying

Are coefficients functions of time?
m Continuous-time vs. Discrete-time

m System ID vs. First Principle



Dynamic Model

Computer systems are dynamic

Current output depends on “history”
Characterize relationships among system variables

Differential equations (time domain)

a, Y(t)+ a, (1) + agy(t) = by u(t) + byu(?)

e Transfer functions (frequency domain)
1(s) = G(s)U(s)

b,s+b C C
1 0 1 2
G(s) = > = +

e Block diagram (pictorial)

R(s) »O—> C(s) — G(s) » Y(S)




Example
Utilization control in a video server

m Periodic task T, corresponding to each video stream i
cli]: processing time, pli]: period
Stream i’s requested CPU utilization: u[i]=c][i]/p][i]
m Total CPU utilization: U(t)=2,u(k], {k} is the set of active streams

= Completion rate: Ry(t)= (Zulm])/At, where {m} is the set of terminated video
streams during [t, t+At]

Unknown

m  Admission rate: R,(t)= (24,Uuli])/At, where {j} is the set of admitted streams during [t,
t+ALt]

m Problem: design an admission controller to guarantee U(t)=U, regardless of R_(t)




Model

Differential equation
e Error: E(t)=U.-U(t)
e Model (differential equation): U(¢) = f (R,(t)-R.(1))dT
=0

e Controller C? E(t) = R,(t)
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) 4
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A Diversion to Math
System representations

m Three ways of system modeling

e Time domain: convolution; differential equations.

u—{ o) > yty () =gO*u(®) = [g(t-TIu(r)dz
0
e s (frequency) domain: multiplication

USI—1G(S) T Y(s) Y(s)=G(s)U(s)

e Block diagram: pictorial

s-domain 1s a simple & powerful “language” for control analysis




A Diversion to Math
Laplace transform

Laplace transform of a signal f(t)

F(s)=LLf(0]= | f(t)e™di

where s=o+iw is a complex variable.

e Laplace transform is a translation from time-domain to

s-domain
o Differential equation = Polynomial function

a, y(t)+ a, (1) + agy(t) = by u(t) + byu(?)

e Y(s) = —25FD s
a,s” +a,s+a,




A Diversion to Math
Laplace transform

m Basic translations
Impulse function f(t)=0(t) « F(s)=1
Step signal f(t)=a-1(t) < F(s)=1/s

Ramp signal f(t)=a-t « F(s)=a/s?
Exp signal f(t)=e?! < F(s)=1/(s-a)
Sinusoid signal f(t)=sin(at) < F(s)=a/(s%+a?)

m Composition rules
Linearity L[af(t)+bg(t)] = aL[f(t)]+bL[g(t)]
Differentiation L[df(t)/dt] = sF(s) — f(0.)
Integration L[ff(t)dt] = F(s)/s



A Diversion to Math
Transfer function

m Modeling a linear time-invariant (LTI) system
G(s) = Y(s)/U(s) = Y(s) = G(s)U(s)

U@s)—"1G(s) > Y(s)

E.g., a second order system with poles p, and p,

bs+b
G(s) = 21S+0 __G .\ c,




A Diversion to Math
Poles and Zeros

m The response of a linear time-invariant (LTI) system

m m-1
b s" +b s" +..+Db,

F(s)=
(5) as"+a, s +..+a,
17 (s -z. C C C
=K ffl( ’)= L —= 4 4+
Hi=1(S_pi) S=p S—DP, S— P,

— f(1) = ECe

{p;} are poles of the function and decide the system behavior




A Diversion to Math
Time response vs. pole location

Stable p s Unstable

LHP RHP

—  Re(s)




A Diversion to Math
Block diagram

m A pictorial tool to represent a system based on transfer functions and signal

flows

m Represent a feedback control system

R(sy—>O—> C(s) — G(s) » Y(S)
1L o __CG, ()
R(Sy—* G(s) " Y(5) 1+ C(s)G, ()

Y(s) =G .(s)R(s)




Back to
Our utilization control example

e Error: E(t)=U.-U(t)
e Model (differential equation): U(?) = f (R,(t)-R.(1))dT

e Controller C? E(t) = R,(t)

T L
) N4
U(t)

CPU

LR




Model

Transfer func. & block diag.

e CPU is modeled as an integrator

t R (s)—R (s) 1
U= J(R,(T)=R.(2))dr = U(s) === = G,(s) =
m Iaputs: reference U, (s) = U /s; completion rgte R.(s) S
m Close-loop system transfer functions
U,(s) as input: G,(s) = C(s)G,(s)/(1+C(s)G,(s))

R.(s) as input: G,(s) = G,(s)/(1+C(s)G,(s))
m  Output: U(s)=G,(s)U./s+G,(S)R.(S)

...................................................................................................................
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Design Goals
Performance Specifications
m Stability

m Transient response

m Steady-state error

B

Robustness

Disturbance rejection
Sensitivity



Performance Specs: bounded input,bounded output stability

m BIBO stability: bounded input results in bounded output.

A LTI system is BIBO stable if all poles of its transfer function are in the LHP (Vp,
Re[p,]<0).

Hinil(S_Zi)= C, N C, C

Y(S)=G(S)U(S)=KH?=1(S_pi) S—p, S—p, S = P

= y(t)= Y Cie™
i=1

[—00

Note: C.e"

© if Re[p]>0



Performance Specs
Stability

Stable ™ Unstable

X

- RHP

Rcl.:)




Performance specifications
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Example: Control & Response in an Email Server (IBM)
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Performance Specs
Steady-state error

Steady state (tracking) error of a stable system

e, = lime(t) = lim(r(1)- ()

r(t) is the reference input, y(t) is the system output.
e How accurately can a system achieve the desired state?
e Final value theorem: if all poles of sF(s) are in the open left-half
of the s-plane, then

hm f (1) =limsF(s)

s—0

e Easy to evaluate system long term behavior without solving it

= hm e(t) = limsE(s)

s—0



Performance Specs
Steady-state error

Steady state error of a CPU-utilization control system

ui) -
09
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Performance Specs
Robustness

m Disturbance rejection: steady-state error caused by external
disturbances
Can a system track the reference input despite of external disturbances?
Denial-of-service attacks
m  Sensitivity: relative change in steady-state output divided by the relative
change of a system parameter
Can a system track the reference input despite of variations in the system?
Increased task execution times
Device failures



Performance Specs
Goal of Feedback Control

m Guarantee stability
m Improve transient response

Short settling time
Small overshoot

m Small steady state error
m Improve robustness wrt uncertainties

Disturbance rejection
Low sensitivity
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Controller Design

PID control

Proportional-Integral-Derivative (PID) Control

Proportional Control

Integral control

Derivative control

Classical controllers with well-studied properties and tuning rules

x(t)= KK Je(t)dr < C(s)=

x(t) = Ke(t)

<=

X&) = KK, e() <

C(s)=K

C(s)=KK s

R(S)

><>_E(sl

X

C(s) |

Gy(S)

» Y(S)

KK

S

i




Controller Design
CPU Utilization Control

e CPU is modeled as an integrator

f R (s)-R (s) 1
U= J(R,(T)=R.(2))dr = U(s) === = G,(s) =
= IAplts: set-point U (s) = U /s ; task gompletion R.(S) S
m Close-loop system transfer functions
U,(s) as input: G,(s) = C(s)G,(s)/(1+C(s)G,(s))
R.(s) as input: G,(s) = G,(s)/(1+C(s)G,(s))

m C(s)=? to achieve zero steady-state error: U(t) — U,

...................................................................................................................



Proportional Control
Stability

m Proportional Controller
ry(t)=Ke(t); C(s) =K
m Transfer functions
U//s as input: G,(s) = K/(s+K)
R.(s) as input: G,(s) = 1/(s+K)
m  Stability
Pole p, = -K<0 < System is BIBO stable iff K>0
Note: System may shoot to 100% if K<O!




Proportional Control
Steady-state error

= Assume completion rate R_(t) keeps constant for a time period longer than
the settling time: R (s)=R_/s

m System response is

USGI(S) RcG2(S) KUS _Rc
+ =

Uls)= S S s(s+ K)

e Compute steady-state err using final value theorem,
1imU(t)=1imsU(s)=limKUS_RC =U _X =e =-—<0
{—>o0 s—0 s—=0 s+ K K > K

e P-control cannot achieve the desired CPU utilization U,; instead
it will end up lower by R_/K Oops!

e The larger the proportional gain K is, the closer will CPU
utilization approach to U,
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Proportional-Integral Control

Stability
m Proportional Controller
r,(H=K(e(t)+K:[.e(t)dt) C(s) = K(1+Ki/s)
m Transfer functions
U./s as input: G,(s) = (Ks+KK))/(s?+Ks+KK)
R.(s) as input: G(s) = s/(s?+Ks+KK)

m Stability

Poles Re[p,]<0, Re[p,]<0
< System is BIBO stable iff K>0 & Ki>0

...................................................................................................................



Proportional Control
Steady-state error

= Assume completion rate R_(t) keeps constant for a time period longer than
the settling time: R (s)=R_/s

m System response is

UG (s) RG,(s) (KU,+R)s+KKU,
+ =
S s s(s” + Ks+ KK )

U(s) =

e Compute steady-state err using final value theorem,

1. U t 1. U 1. ( : < ) J . U O
= = = > =
tlm (?) Slngs (s) slng 7 | i e,

 PI control can accurately achieve the desired CPU utilization U,V
e Control analysis gives design guidance
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Controller Design
Summary & pointers

m PID control: simple, works well in many systems

P control: may have non-zero steady-state error
| control: improves steady-state tracking
D control: may improve stability & transient response

m Linear continuous time control

Root-locus design

Frequency-response design

State-space design

G. F. Franklin et. al., Feedback control of dynamic systems



Discrete Control

m More useful for computer systems

m Time is discrete; sampled system

denoted k instead of t
m Main tool is z-transform

flk) = F(z) , where z is complex
Analogous to Laplace transform for s-domain

ZLf (k)] = F(z) = ?f(k)z'k



Discrete Modeling

Difference equation

+ V(m) = a,V(m-1) + a,V(m-2) + b,U(m-1) + b,U(m-2)

+ zdomain: V(2) = a,z'"VW(2) + a,z?V(2) + b,z1U(2) + b,z?U(2)

+ Transfer function G(2) = (b,z + b,)/(z?-a,z - a,)
V(m): output in m*" sampling window
U(m): input in mth sampling window
Order n: #sampling-periods in history affects current performance
SP =30 sec, and n = 2 - Current system performance depends on
previous 60 sec



Root Locus analysis of Discrete Systems

m Stability boundary: |z|=1 (Unit circle)
m Settling time = distance from Origin
m Speed = location relative to Im axis

Right half = slower
Left half = faster



Effect of discrete poles

Im(s)

A

Higher-frequency
response \
onger settling time
Stable / Re(s)
Unstable |Z |

Intuition: z = e




Feedback control works in CS

U.Mass: network flow controllers (TCP/IP — RED)
IBM: Lotus Notes admission control

UIUC: Distributed visual tracking

UVA

Web Caching QoS

Apache Web Server QoS differentiation

Active queue management in networks

Processor thermal control

Online data migration in network storage (with HP)
Real-time embedded networking

Control middleware

Feedback control real-time scheduling



Advanced Control Topics

m Robust Control

Can the system tolerate noise?
m Adaptive Control

Controller changes over time (adapts)
= MIMO Control

Multiple inputs and/or outputs
m Stochastic Control

Controller minimizes variance
m Optimal Control

Controller minimizes a cost function of error and control energy
® Nonlinear systems

Neuro-fuzzy control
Challenging to derive analytic results



Issues for Computer Science

Most systems are non-linear
But linear approximations may do

+ €gq, fluid approximations
First-principles modeling is difficult

Use empirical techniques

Mapping control objectives to feedback control loops
ControlWare paper

Deeply embedded networking

Massively decentralized control problem
Modelling
Node failures



