
Mutatis Mutandis :
Safe and Predictable Dynamic Software Updating

Gareth Stoyle† Michael Hicks?

Gavin Bierman‡ Peter Sewell† Iulian Neamtiu?

† University of Cambridge
Cambridge England

‡ Microsoft Research
Cambridge England

? University of Maryland
College Park, Maryland USA

{First.Last}@cl.cam.ac.uk gmb@microsoft.com {mwh,neamtiu}@cs.umd.edu

ABSTRACT
Dynamic software updates can be used to fix bugs or add features
to a running program without downtime. Essential for some appli-
cations and convenient for others, low-level dynamic updating has
been used for many years. Perhaps surprisingly, there is little high-
level understanding or language support to help programmers write
dynamic updates effectively.

To bridge this gap, we present Proteus, a core calculus for dy-
namic software updating in C-like languages that is flexible, safe,
and predictable. Proteus supports dynamic updates to functions
(even active ones), to named types and to data, allowing on-line
evolution to match source-code evolution as we have observed it
in practice. We ensure updates are type-safe by checking for a
property we call “con-freeness” for updated typest at the point
of update. This means that non-updated code will not uset con-
cretely beyond that point (concrete usages are via explicit coer-
cions) and thust’s representation can safely change. We show how
con-freeness can be enforced dynamically for a particular program
state. We additionally define a novel and efficient staticupdateabil-
ity analysisto establish con-freeness statically, and can thus auto-
matically infer program points at which all future (well-formed)
updates will be type-safe. We have implemented our analysis for C
and tested it on several well-known programs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Validation; D.3.3 [Programming Languages]: Formal Definitions
and Theory—Semantics,Syntax

General Terms
Design, Languages, Reliability, Theory, Verification

Keywords
dynamic software updating, updateability analysis, type inference,
capability, Proteus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05,January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

1. INTRODUCTION
Dynamic software updating (DSU) is a technique by which a

running program can be updated with new code and data with-
out interrupting its execution. DSU is critical for non-stop systems
such as air-traffic control systems, financial transaction processors,
enterprise applications, and networks, which must provide contin-
uous service but nonetheless be updated to fix bugs and add new
features. DSU is also useful for avoiding the need to stop and start
a non-critical system (e.g., reboot a personal operating system) ev-
ery time it must be patched.

Providing general-purpose DSU is particularly challenging be-
cause of the competing concerns offlexibility andsafety. On the
one hand, the form of dynamic updates should be as unrestricted
as possible, since the purpose of DSU is to fix bugs or add features
not necessarily anticipated in the initial design. On the other hand,
supporting completely arbitrary updates (e.g., binary patches to the
existing program) makes reasoning about safety impossible, which
is unacceptable for mission-critical software.

In this paper we present Proteus, a general-purpose DSU formal-
ism for C-like languages that carefully balances these two concerns,
and adds assurances of predictability. Proteus programs consist of
function and data definitions, and definitions ofnamed types. In
the scope of a named type declarationt = τ the programmer can
use the namet and representation typeτ interchangeably but the
distinction lets us control updates. Dynamic updates can add new
types and new definitions, and also provide replacements for exist-
ing ones, with replacement definitions possibly at changed types.
Functions can be updated even while they are on the call-stack: the
current version will continue (or be returned to), and the new ver-
sion is activated on the next call. Permitting the update of active
functions is important for making programs more available to dy-
namic updates [1, 12, 4]. We also support updating function point-
ers. Based on our experience [12] and a preliminary study on the
evolution of C programs (§2), we believe Proteus is flexible enough
to support a wide variety of dynamic updates.

When updating a named typet from its old representationτ to
a new oneτ ′, the user provides atype transformer functionc with
typeτ → τ ′. This is used to convert existingt values in the pro-
gram to the new representation. To ensure an intuitive semantics,
we require that at no time can different parts of the program expect
different representations of a typet; a concept we callrepresenta-
tion consistency. The alternative would be to allow new and old
definitions of a typet be valid simultaneously. Then, we could
copyvalues when transforming them, where only new code sees
the copies [10, 12]. While this approach would be type safe, old

and new code could manipulate different copies of the same data,
which is likely to be disastrous in a language with side-effects.

To ensure type safety and representation consistency, we must
guarantee the following property: after a dynamic update to some
typet, no updated valuesv′ of typet will ever be manipulatedcon-
cretelyby code that relies on the old representation. We call this
property “con-t-freeness” (or simply “con-freeness” when not re-
ferring to a particular type). The fact that we are only concerned
about subsequentconcreteuses is important: if code simply passes
data around without relying on its representation, then updating
that data poses no problem. Indeed, for our purposes the notion
of con-freeness generalizes notions of encapsulation and type ab-
straction in object-oriented and functional languages. This is be-
cause concrete versus abstract uses of data are not confined to a
single linguistic construct, like a module or object, but could oc-
cur at arbitrary points in the program. Moreover, con-freeness is a
flow-sensitive property, since a function might manipulate at value
concretely at its outset, but not for the remainder of its execution.

To enforce con-freeness, Proteus programs are automatically an-
notated with explicittype coercions: abst e convertse to type t
(assuminge has the proper typeτ), andconte does the reverse at
points wheret is used concretely. Thus, when some typet is up-
dated, we can dynamically analyze the active program to check for
the presence of coercionscont, taking into account that subsequent
calls to updated functions will always be to their new versions. If
anycont occurrences are discovered, then the update is rejected.

Unfortunately, the unpredictability of a dynamic con-free check
could make it hard to tell whether an update failure is transient
or permanent, since the dynamic check is for a particular program
state. Rather, we would prefer to reason about update behavior
statically, to (among other things) assess whether there are enough
update points. Therefore, we have developed a novelstatic up-
dateability analysis. We introduce anupdate expression to label
program points at which updates could be applied. For each of
these, we estimate those typest for which the program may not be
con-t-free. We annotate theupdate with those types, and at run
time ensure that any dynamic update at that point does not change
them. This is simpler than the con-free dynamic check, and more
predictable. In particular, we can automatically infer those points
at which the program is con-free for all typest, precluding dynamic
failure.

This paper makes the following contributions:

• We present Proteus, a simple and flexible calculus for reason-
ing about representation-consistent dynamic software updat-
ing in C-like languages (§3). We motivate our DSU support
in Proteus with a brief study of the changes over time to some
large C programs, taking these as indicative of dynamic up-
dates that we have to support (§2).

• We formally define the notion of con-freeness, and prove that
it is sufficient to establish type safety in updated programs
(§3.4).

• We present a novel updateability analysis that statically in-
fers the types for which a givenupdate point is not con-
free (§4). We present some preliminary experience with an
implementation of our analysis for C programs (§4.4).

In §6 and§7 we discuss related work and conclude.

2. DYNAMIC SOFTWARE UPDATING
To enable on-line evolution we must support software changes

unanticipated during the initial design. The kind of changes that

must be support on-line are, we believe, similar to those that can be
observed off-line in the program source tree. Therefore, to motivate
our approach to DSU we describe the results of a small study we
did on the source code evolution of some long-running services.

Using a custom tool, we compared increasing versions of a few
large C programs. These include Linux, version 2.4.17 (Dec. 2001)
to 2.4.21 (Jun. 2003); BIND, versions 9.2.1 (May 2002) to 9.2.3
(Oct. 2003); Apache, version 1.2.6 (Feb. 1998) to 1.3.29 (Oct.
2003); and OpenSSH, version 1.2 (Oct. 1999) to 3.8 (Feb. 2004).
For these programs, the changes followed a few key trends:

• The overwhelming majority of a version change consists of
added functions, or changes to existing functions which do
not involve a changed type signature. Few, if any, functions
are deleted. For example, BIND 9.2.2—9.2.3 resulted in 30
new functions added and 890 changed (starting from 3214
total functions). Of the changed functions, only 28 had a
change of signature, of which about two-thirds were to add
or remove arguments with the rest changing the type of an
argument. As another example, Apache 1.3.0–1.3.6 resulted
in 51 functions added, 10 deleted, and 290 changed, of which
4 changed their type signature (starting from 836 total func-
tions).

• Global variables tend to be fairly static, adding a few
and deleting a few, but growing over time. For example,
OpenSSH grew from 106 to 251 total global variables from
version 1.2.2 to 3.7, adding from 3 to 30 new variables per
release, deleting up to 10. One change in Apache added 88
variables and deleted 37, but most added or deleted fewer
than 10. It is extremely rare for a global variable to change
type.

• Data representations, which is to saytype definitions, change
between versions, though rarely. In C, types are defined with
struct and union declarations (aggregates),typedefs,
andenums. Very often, the changes are to aggregates and in-
volve adding or removing a field. For example, moving from
Linux 2.4.20—2.4.21 resulted in 36 changes tostruct def-
initions (out of 1214 total), of which 21 were the addition or
removal of fields, while the remaining 15 were changes to
the types of some fields. Type definitions are rarely deleted.

In short, to match these kinds of changes DSU must readily sup-
port the addition of new definitions (functions, data, or types), and
the replacement of existing definitions (data or functions) at the
same type. It must also allow changes to function types and data
representations, but not necessarily to the types of global variables.
Proteus supports these kinds of changes.

3. PROTEUS
This section defines a core calculus Proteus that formalizes our ap-
proach to dynamic software updating.

3.1 Syntax
Proteus models a type-safe, C-like language augmented with dy-

namic updating; its syntax shown in Figure 1. ProgramsP are
a series of top-level definitions followed by an expressione. A
fun z . . . defines a top-level recursive function, andvar z : τ . . .
defines a top-levelmutablevariable (i.e., it has typeτ ref). A
type t = τ . . . defines the typet. Top-level variablesz (a.k.a.ex-
ternal names) must be unique withinP , and are not subject to
α-conversion, so they can be unambiguously updated at run-time.
Expressionse are largely standard. We abuse notation and write
multi-argument functions

Types τ ::= t | int | {l1 : τ1, . . . , ln : τn}
| τ ref | τ1 → τ2

Expressions e ::= n | x | z | r
| {l1 = e1, . . . , ln = en} | e.l
| e1 e2 | let x : τ = e1 in e2

| ref e | !e | e1 := e2

| if e1 = e2 then e3 else e4

| update | abst e | cont e

Values v ::= z | n | {l1 = v1, . . . , ln = vn}
| r | abst v

Programs P ::= fun z(x : τ) : τ ′ = e in P
| var z : τ = v in P
| type t = τ in P
| e

Figure 1: Syntax for Proteus

fun f(x1 : τ1, . . . , xn : τn) : τ = e

which are really functions that take a record argument, thus having
type{x1 : τ1, . . . , xn : τn} → τ . We similarly sugar calls to such
functions.

The boxed expressions support dynamic updates; we describe
them further below. The typing rules define the judgmentΓ `
P : τ , whereΓ is a map from type namest, external namesz, and
local variablesx to typesτ . Aside from our new constructs, type
checking is standard.

Example.Figure 2 shows a simple kernel for handling read and
write requests on files or sockets, which one might want to dynami-
cally update. Some functions and type definitions have been elided
for simplicity. Reading from the bottom, the functionloop is an in-
finite loop that repeatedly getsreq objects (e.g., system calls) and
then dispatches them to an appropriate handler using thedispatch
function. This function first callsdecode to determine whether
a given file descriptor is a network channel or an open file (e.g.,
by looking in a table). If it is a network channel,dispatch calls
getsock to get asock object based on the given file descriptor (e.g.,
indexed in an array). Next, it decodes the remaining portion of
the req to acquire the transmission flags. Finally, it finds an ap-
propriatesockhandler object to handle the request and calls that
handler. Handlers are needed to support different kinds of network
channel, e.g., for datagram communications (UDP), for streaming
connections (TCP), etc. Different handlers are implemented for
each kind, andgetsockhandler chooses the right one. A similar set
of operations and types would be in place for files. Afterdispatch
completes, its result isposted to the user, and the loop continues.

We now discuss dynamic updates to this kernel and explain our
new constructs (the boxed syntax from Figure 1).

Update. The update expression permits a dynamic update to
take place, if one is available. That is, at run-time a user provides an
update through an out-of-band signaling mechanism, and the next
time update is reached in the program, that update is applied.
Informally, an update consists of the following:

• Replacement definitions for named typest = τ . Along with
the new definitiont = τ ′, the user provides atype trans-
former functionof type τ → τ ′, used by the runtime to
convert existing values of typet in the program to the new
representation.

type handResult = int in
type sockhandler =
{sock : sock, buf : buf, sflags : sflags} → handResult in

let udp read(sock : sock, buf : buf, sflags : sflags)
: handResult = ... in

let udp write(sock : sock, buf : buf, sflags : sflags)
: handResult = ... in

type req = {op : op, fd : int, buf : buf, rest : blob} in
type fdtype = File | Socket | Unknown in

let dispatch (s : req) : handResult =
let t = decode (s.fd) in
if (t = Socket) then

let k = getsock (s.fd) in
let flags = decode sockopargs (s.rest, s.op) in
let h = getsockhandler (s.fd, s.op) in
h (k, s.buf, flags)

else if (t = File) then ...
else − 1 in

let post (r : handResult) : int = ... in

let loop (i : int) : int =
let req = getreq (i) in
let i = post (dispatch req) in
loop i in

loop 0

Figure 2: A simple kernel for files and socket I/O

• Replacement definitions for top-level identifiersz, having the
same type as the original.

• New type, function, and variable definitions.

We consider extending specifications to support binding deletion
in §5. When writing an updateable program, the programmer can
insertupdate manually, and/or the compiler can insertupdate
automatically. Figure 3 showsdispatch from Figure 2 with some
addedupdate expressions (it also includes type coercions, dis-
cussed next). We consider a strategy for automatic insertion of
update in §4.

Type Coercions.In Figure 2, within the scope of a type def-
inition like type sockhandler = . . . the type sockhandler
is a synonym for its definition. For example, the expression
h (k, s.buf, flags) in dispatch uses h, which has type
sockhandler, as a function. In this case, we say that the named type
sockhandler is being usedconcretely. However, there are also parts
of the program that treat data of named typeabstractly, i.e., they
do not rely on its representation. For example, thegetsockhandler
function simply returns asockhandler value; that the value is a
function is incidental.

In the Proteus semantics (but not in the user source language) all
uses of a named type definitiont = τ are made explicit with type
coercions:abst e convertse to typet (assuminge has the proper
type τ), andcont e does the reverse. For example,dispatch in
Figure 3 constructs ahandResult value from−1 via the coercion
abshandResult − 1. Conversely, to invokeh, it must be converted
from typesockhandler via the coercion(consockhandler h) (. . .).

Type coercions serve two purposes operationally. First, they are
used to prevent updates to some typet from occurring at a time
when existing code still relies on the old representation. In par-
ticular, the presence ofcont clearly indicates where the concrete

UN : sockhandler 7→ ({sock : sock, buf : buf, sflags : sflags, cookie : cookie} → int, sockh coer)
sock 7→ ({daddr : int, . . . }, sock coer)

AN : sockhandler 7→ (cookie, int)
UB : dispatch 7→ (req → handResult, λ(s).. . . (consockhandler h)(k, (conreq s).buf, flags, (security info ()) . . .)
AB : udp read′ 7→ ({sock : sock, buf : buf, sflags : sflags, cookie : cookie} → int, λ(x)....)

udp write′ 7→ ({sock : sock, buf : buf, sflags : sflags, cookie : cookie} → int, λ(x)....)
sockh coer 7→ (({sock : sock, buf : buf, sflags : sflags} → int) →

({sock : sock, buf : buf, sflags : sflags, cookie : cookie} → int),
λ(f).if f = udp read then udp read′ else if f = udp write then udp write′)

sock coer 7→ . . .
security info 7→ (int → cookie, λ(x).. . .)

Figure 4: A sample update to the I/O kernel

let dispatch(s : req) : handResult =
let t = decode((conreq s).fd) in
let u1 = update in
if (confdtype t) = Socket then

let k = getsock((conreq s).fd) in
let flags =

decode sockopargs((conreq s).rest, (conreq s).op) in
let h = getsockhandler((conreq s).fd, (conreq s).op) in
let u2 = update in
let res = (consockhandler h)(k, (conreq s).buf, flags) in
let u3 = update in res

else if (confdtype t) = File then . . .
else (abshandResult −1)

Figure 3: dispatch with explicit update and coercions

representation oft is relied upon, and therefore can be used as part
of a static or dynamic analysis to avoid an invalid update (§3.4).

Second, coercions are used to “tag” abstract data so it can be
converted to a new representation should its type be updated. In
particular, all instances of typet occurring in the program will have
the form abst e. Therefore, given a user-provided transformer
function ct which converts from the old representation oft to the
new, we can rewrite each instance at update-time to beabst (ct e).
This leads to a natural CBV evaluation strategy for transformers in
conjunction with the rest of the program (§3.3).

The typing rules for coercions are simple:

Γ, t 7→ τ ` e : t

Γ, t 7→ τ ` cont e : τ

Γ, t 7→ τ ` e : τ

Γ, t 7→ abst e : t

Because variables are explicitly annotated with types, inserting
abs andcon coercions automatically is a relatively straightfor-
ward application of subtyping-as-coercions [3]; further details will
appear in the extended version [19].

3.2 Specifying Dynamic Updates
Formally, a dynamic updateupd consists of four elements, writ-

ten as a record with the labelsUN, UB, AN, andAB:

• UN (Updated Named types) is a map from a type name to
a pair of a type and an expression. Each entry,t 7→ (τ, c),
specifies a named type to replace (t), its new representation
type (τ), and a type transformer functionc from the old rep-
resentation type to the new.

• AN (Added Named types) is a map from type namest to type
environmentsΩ, which are lists of type definitions. This is
used to define new named types. The domain specifies types
t in the existing program, and the new definitions are inserted
just abovet for scoping purposes.

• UB (Updated Bindings) is a map from top-level identifiers
to a pair of a type and abinding valuebv, which is either

a functionλ(x).e or a valuev. These specify replacement
fun andvar definitions. Each entryz 7→ (τ, bv) contains
the binding to replace (z), the type of the new binding as it
appears in the source program (τ), which must be equal to
the current type, and the new binding (bv).

• AB (Added Bindings) is a map from top-level identifiersz to
pairs of types and binding values. These are used to specify
new fun andvar definitions. Because our runtime seman-
tics permits top-level definitions to be mutually recursive,
their ordering with the existing program is of no consequence
(we could easily change the source language to support this).

As an example, say we wish to modify socket handling in Fig-
ure 2 to include acookieargument for tracking security information
(this was done at one point in Linux). This requires four changes:
(1) we modify the definition ofsockhandler to add the additional
argument; (2) we modify thesock type to add new information
(such as a destination address for which the cookie is relevant); (3)
we modify existing handlers, likeudp read, to add the new func-
tionality, and (4) we modify thedispatch routine to call the handler
with the new argument. The user must provide functions to convert
existingsock andsockhandler objects.

The update is shown in Figure 4. TheUN component specifies
the new definitions ofsock andsockhandler, along with type trans-
former functionssockh coer andsock coer, which are defined in
AB. The AN component defines the new typecookie = int,
and that it should be inserted above the definition ofsockhandler
(which refers to it). Next,UB specifies a replacementdispatch
function that calls the socket handler with the extra security cookie,
which is acquired by calling a new functionsecurity info.

TheAB component specifies the definitions to add. First, it spec-
ifies new handler functionsudp read′ andudp write′ to be used in
place of the existingudp read andudp write functions. The rea-
son they are defined here, and not inUB, is that the new versions
of these functions have a different type than the old versions (they
take an additional argument). So that code will properly call the
new versions from now on, thesock coer maps between the old
ones and the new ones. Thus, existing datastructures that contain
handler objects (such as the table used bygetsockhandler) will be
updated to refer to the new versions. If any code in the program
calledudp read or udp write directly, we could replace them with
stub functions [12, 7], forwarding calls to the new version, and
filling in the added argument. Thus, Proteus indirectly supports up-
dating functions to new types for those rare occasions when this is
necessary.

3.3 Operational Semantics
The operational semantics is shown in Figure 5, defined as a

judgment of the formΩ; H, e −→ Ω; H ′, e′ over configurations
consisting of a type environmentΩ, a heapH and an expression

H, P −→ H′, P ′

(PROJ) H, {l1 = v1, . . . , ln = vn}.li −→ H, vi (REF) H, ref v −→ (H, r 7→ (·, v)), r
(LET) H, let x : τ = v in e −→ H, e[x := v] (ASSIGN) (H, ρ 7→ (ω, e)), ρ := v −→ (H, ρ 7→ (ω, v)), v
(DEREF) (H, ρ 7→ (ω, e)), !ρ −→ (H, ρ 7→ (ω, e)), ρ := e (CALL) (H, z 7→ (τ, λ(x).e)), z v −→ (H, z 7→ (τ, λ(x).e), e[v/x]
(IF-T) H, if v1 = v2 then e1 else e2 −→ (IF-F) H, if v1 = v2 then e1 else e2 −→

H, e1 (wherev1 = v2) H, e2 (wherev1 6= v2)

(CONABS) H, cont (abst v) −→ H, v (NO-UPDATE) H,update −→ H, 1

Ω; H, P −→ Ω; H′, P ′

(CONG)
H, e −→ H′, e′

Ω; H, E[e] −→ Ω; H, E[e′]
(UPDATE)

updateOK(upd, Ω, H, E[1])

Ω; H, E[update]
upd−−−→ U [Ω]upd;U [H]upd,U [E[0]]upd

otherwise:Ω; H, E[update]
upd−−−→ UpdEx

Eval Contexts E ::= | let x = E in e | E e | v E | E.l | {l1 = v1, . . . , li = E, . . . , ln = en} | ref E | !E | E := e | v := E
| cont E | abst E | if E = e then e1 else e2 | if v = E then e1 else e2

Heap addresses ρ ::= z | r Heap type tags ω ::= τ | ·
Heap bindings b ::= λ(x).e | e Heap values bv ::= λ(x).e | v

U [b]upd (updating bindings)

U [n]upd = n U [x]upd = x U [x]upd = x

U [abst e]upd =

8>><>>:
abst (c U [e]upd)

if t 7→ (τ ′, c) ∈ upd.UN

abst U [e]upd

otherwise
For remainingb containing subtermse1, . . . , en,
we inductively applyU [ei]

upd

U [H]upd (updating the heap)

U [z = (τ, b), H]upd

=

8>><>>:
z = (τ ′, b′),U [H]upd

if upd.UB(z) = (τ ′, b′)

z = (τ,U [b]upd),U [H]upd

otherwise

U [r = (·, b), H]upd = (r = (·,U [b]upd)),U [H]upd

U [∅]upd = upd.AB

U [Γ]upd (updating environments)

U [∅]upd = types(upd.AB)

U [x : τ, Γ]upd = x : τ,U [Γ]upd

U [r : τ, Γ]upd = r : τ,U [Γ]upd

U [z : τ, Γ]upd =

z : heapType(τ ′),U [Γ]upd if upd.UB(z) = (τ ′,)

z : τ,U [Γ]upd otherwise

U [t = τ, Γ]upd =

t = upd.AN(t), Γ′ if t ∈ dom(upd.AN)
Γ′ otherwise

whereΓ′ =

8>><>>:
t = τ ′,U [Γ]upd

if upd.UN(t) = (τ ′,)

t = τ,U [Γ]upd

otherwise

Auxiliary function to convert update types to heap types:
heapType(τ1 → τ2) = τ1 → τ2
heapType(τ) = t ref whereτ 6= τ1 → τ2

C(Ω; H; P) = Ω; H; e (compilation from programs to configurations)

C(Ω; H; e) = Ω; H; e
C(Ω; H; type t = τ in P) = C(Ω, t = τ ; H; P)
C(Ω; H; fun f(x : τ) : τ ′ = e in P) = C(Ω; H, f 7→ (τ → τ ′, λ(x).e); P)
C(Ω; H;var z : τ = v in P) = C(Ω; H, z 7→ (τ, v); P)

Figure 5: Proteus Operational Semantics

e. To evaluate a programP , we compile it into a configuration
Ω; H, e = C(∅; ∅; P), as shown in the Figure.

The type environmentΩ defines a configuration’s named types.
Each type indom(Ω) maps to a single representationτ ; some re-
lated approaches [6, 12] would permitt to map to a set of repre-
sentations indexed by a version. We refer to our non-versioned ap-
proach as beingrepresentation consistentsince a running program
has but one definition of a type at any given time.

The heapH is a map from heap addressesρ to pairs (ω, b),
whereω is a type tag andb is a binding. We use the heap to store
both mutable references created withref and top-level bindings
created withvar andfun; thereforeρ ranges over locationsr and
external namesz. For normal references, the type tagω is simply·,
indicating the absence of a type, and for identifiers,z, it is the type
τ which appeared in the definition ofz in the program. Type tags
are used to type check new and replacement definitions provided
by a dynamic update.

The operational semantics is given using evaluation contexts. All
expressionse can be uniquely decomposed intoE[e′] for some eval-
uation contextE ande′, so the choice of rule is unambiguous. Next,
we consider how our semantics expresses the interesting operations
of dynamic updating: (1) updating top-level identifiersz with new
definitions, and (2) updating type definitionst to have a different
representation.

Replacing Top-level Identifiers.All top-level identifiersz
from the source program are essentially statically-allocated refer-
ence cells. As a result, at update-time we can changez’s binding in
the heap, and afterward any code that accesses (dereferences)z will
see the new version. However, our treatment of references differs
somewhat from the standard one to facilitate dynamic updates.

First, since all functions are defined at the top-level, they are all
references. However, rather than give top-level functions the type
(τ1 → τ2) ref , we simply give them typeτ1 → τ2, and perform
the dereference as part of the (CALL) rule. This has the pleasant
side effect of rendering top-level functions immutable during nor-
mal execution, as is typical, while still allowing them to be dynam-
ically updated.

Second, as we have explained already, top-level bindings stored
in the heap are paired with their typeτ to be able to type check new
and replacement bindings. Some formulations of dynamic linking
define aheap interface, which maps variablesz to typesτ , but we
find it more convenient to merge this interface into the heap itself.

Updating Data of Named Type.As mentioned in§3.1, Pro-
teus uses coercions to identify where data of a typet is being used
abstractly and concretely. The (CONABS) rule allows an abstract
valueabst v to be used concretely when it is provided tocont;
this annihilates both coercions so thatv can be used directly.

At update time, given a type transformation functionc for an up-
dated typet, we rewrite each occurrenceabst e to beabst (c e).
Although only values can be stored in the heap initially, heap val-
ues of the formabst v, will be rewritten to beabst (c v), which
is no longer a value. Therefore,!r can potentially dereference an
expression from the heap. While this is not a problem in itself, the
transformation should be performed only once since it conceptually
modifies the data in place. Therefore, the (DEREF) rule evaluates
the contents of the reference and thenwrites backthe result before
proceeding.

Update Semantics.A dynamic updateupd is modeled with
a labeled transition, whereupd labels the arrow. When no up-
date is available, anupdate expression simply evaluates to1, by

(NO-UPDATE). Otherwise, (UPDATE) specifies that ifupd is well-
formed (byupdateOK(−)), theupdate evaluates to0, and the
program is updated by transforming the current type environment,
heap, and expression according toU [−]upd. When transforming
expressions,U [−]upd applies type transformation functions to all
abst e expressions of a named typet that has been updated. When
transforming the heap, it replaces top-level identifier definitions
with their new versions, and adds all of the new bindings. When
transformingΩ,1 it replaces type definitions with their new ver-
sions, and inserts new definitions into specified slots in the list.

3.4 Update Safety
The conditions placed upon an update to guarantee type-safety

are formally expressed by the precondition to the (UPDATE) rule
given in Figure 7. TheupdateOK(−) predicate must determine
that at the current point it is valid to apply this update—a dynamic
property—and that the update is compatible with the program. The
latter is a static property, in the sense that the information to per-
form it is available without recourse to the current state of the pro-
gram, provided one has the original source and the updates previ-
ously applied.

let i = post (
let u2 = update in
let res = (consockhandler abssockhandler udp read)
{sock = vsock, buf = (conreq vreq).buf,
sflags = vsflags} in

let u3 = update in res
) in loop i

Figure 6: Example active expression

Update Timing.To motivate the importance of timing, Fig-
ure 6 shows the expression fragment of our example program
after some evaluation steps (the outerlet i = . . . binding
comes from loop and the argument topost is the partially-
evaluateddispatch function). The let u2 = update . . . is
in redex position, and suppose that the update described in§3.2
is available, which updatessockhandler to have an additional
cookie argument, amongst other things. After applying the up-
date, the user’s type transformersockh coer is inserted to con-
vert udp read, to be called next. Evaluating the transformer re-
placesudp read with udp read′, and applying (CONABS) yields
the expressionudp read′(vsock, (conreq vreq).buf, vsflags). But this
is type-incorrect! The new versionudp read′ expects a fourth ar-
gument, but the existing call only passes three arguments.

The problem is that at the time of the update the program is eval-
uating the old version ofdispatch, which expectssockhandler val-
ues to take only three arguments. That is, this point in the program
is not “con-t-free” since it will manipulatet values concretely. This
fact is made manifest by the usage ofconsockhandler in the active ex-
pression. In general, we say a configurationΩ; H, e is con-freefor
an updateupd if for all named typest that the update will change,
cont is not a subexpression of the active expressione or any of the
bindings in the heap that are not replaced by the update. We write
this asconFree[−]upd; the definition is given in Figure 7.

Two other points are worth noting. First, the active expression
only uses instances ofhandResult abstractly after the update (pass-
ing them topost), and so should we wish,handResult could be

1Ω is just a simpler form ofΓ, soU [Ω]upd is defined byU [Γ]upd

shown in the Figure, with the exception thatU [∅]upd = ∅ (i.e. the
types of the new bindings are not added).

updateOK(upd, Ω, H, e) =

conFree[H]upd∧
conFree[e]upd∧
Γ = types(H)∧
` U [Ω]upd∧
∀t 7→ (τ, c) ∈ upd.UN. U [Ω, Γ]upd ` c : Ω(t) → τ∧
∀z 7→ (τ, bv) ∈ upd.UB. U [Ω, Γ]upd ` bv : τ∧

bv = e ⇒ ∃τ ′. Γ(z) = τ ′ ref∧
heapType(τ) = Γ(z)∧

∀z 7→ (τ, bv) ∈ upd.AB. U [Ω, Γ]upd ` bv : τ

conFree[z = (τ, b), H]upd

= conFree[H]upd ∧

tt if z ∈ dom(upd.UB)

conFree[b]upd otherwise
conFree[r = (·, e), H]upd = conFree[e]upd ∧ conFree[H]upd

conFree[n]upd = tt conFree[x]upd = tt

conFree[cont e]upd =

ff if t ∈ dom(upd.UN)
tt otherwise

For remainingb containing subtermse1, . . . , en:
conFree[e]upd =

V
i ei

Figure 7: ProteusupdateOK(−)− check and auxiliary definitions

modified (assuming thatpost is modified as well). Second, the
given update is only unsafe at the firstupdate point; it could be
safely applied atlet u3 = update . . ., since at that point there
are no further concrete uses of any of the changed types.

Update well-formedness.The conditions for update well-
formedness are part of theupdateOK(−) predicate in Figure 7. In
addition to checking proper timing with theconFree[−] checks,
this predicate ensures that type-safety is maintained following the
addition or replacement of code and types. Thetypes(H) predi-
cate extracts all of the type tags fromH and constructs a suitableΓ
for typechecking the new or replacement bindings. Since heap ob-
jects are stored with their declared typeτ , if they are non-functions,
in Γ they are given typeτ ref . Next, the updated type environment
U [Ω]upd is checked for well-formedness. Then, using the updated
Ω andΓ, we check that the type transformer functions, replacement
bindings and new bindings are all well-typed. The important fact
to notice about these type-checks is that they only apply to expres-
sions contained in the update. Only the types of existing code, not
the code itself, are needed. The extra checks in the replacement
bindings clause ensure that a heap cell doesn’t change between a
function an a reference cell and that the type of the cell is preserved.

3.5 Properties
Proteus enjoys an essentially standard type safety result.

Theorem 3.1 (Type safety).If ` Ω; H, e : τ then either

1. Ω; H, e → Ω′; H ′, e′ and ` Ω′; H ′, e′ : τ for someΩ′, H ′

ande′;

2. Ω; H, e → UpdEx; or

3. e is a value

This theorem states that a well-typed program is either a value, or is
able to reduce (and remain well-typed), or terminates abruptly due
to a failed dynamic update. The most interesting case in proving
type preservation is theupdate rule, for which we must prove a
lemma that well-formed and well-timed updates lead to well-typed
programs:

Lemma 3.2 (U [−]− preserves types of programs).
Given ` Ω; H, e and an update, upd, for
which we have updateOK(upd, Ω, H, e), then `
U [Ω]upd;U [H]upd,U [e]upd : τ .

Proofs will appear in the extended version [19].

4. ASSURING PROPER UPDATE TIMING
Type safety in the system we have described so far is predicated

on a dynamic con-free check. Unfortunately, this check could be
difficult to implement, and moreover could fail if the update is ap-
plied at a bad time. The main result of this section is that given
an unannotated Proteus program (noabst or cont or update ex-
pressions), we can statically infer all of the program points that
are con-free with respect to all types in the program, and insert
update there. Thus, we eliminate the need forconFree[−]2 and
we make the update behavior of the program easier to reason about,
since many acceptable update points are known statically. In this
section, we present ourupdateability analysisas a type and infer-
ence system, establish its soundness, and present some preliminary
performance measurements on large C programs which show that
the analysis is quite efficient.

4.1 Capabilities
Our goal is to define and enforce a notion of con-freeness for

a program, rather than a program state. In other words, we wish
to determine for a particularupdate whether it will be accept-
able to update some typet. An update tot will be unacceptable
if an occurrence ofcont exists in any old code evaluated in the
continuation of theupdate. Assuming we can discover all such
occurrences ofcont, we could annotateupdate with those types
t, indicating that they should not be updated. We call this annota-
tion ∆ a capability, since it serves as a bound on what types may
be used concretely in the continuation of anupdate. That is, any
code following anupdate must type check usingΓ restricted to
those types listed in the capability. Since anupdate could change
only types not in the capability, we are certain that existing code
will remain type-safe. As a consequence, if we can type-check our
program containing onlyupdate points with empty annotations,
we can be sure that no update will fail due to bad timing.

4.2 Typing
We define acapability type system that tracks the capability at

each program point to ensure thatupdates are annotated soundly.
First we change slightly the grammar for types:

Capabilities ∆ ::= {t1, . . . tn} | ∆ ∩∆
Updateability µ ::= U | N

Types τ ::= · · · | τ
µ;∆;∆′
−→ τ

We assume thatupdate occurrences are annotated with some∆,
and function definitions are annotated with someµ;∆;∆′ (§4.4
explains how to infer such annotations).

2We may wish to combine it with the static analysis. See§4.3.

∆; Γ `µ e : τ ;∆′

∆; Γ `µ n : int;∆ (A.Int) ∆; Γ, x : τ `µ x : τ ;∆ (A.Var) ∆; Γ, x : τ `µ x : τ ;∆ (A.XVar)

∆; Γ `µ e1 : τ ′1;∆′

∆′; Γ, x : τ1 `µ e2 : τ2; ∆′′

∆; Γ `µ let x : τ = e1 in e2 : τ2;∆′′
(A.Let)

∆; Γ `µ e1 : τ1
µ̂;∆̂;∆̂′
−→ τ2;∆′

∆′; Γ `µ e2 : τ1;∆′′ ∆′′′ ⊆ ∆′′

(µ̂ = U) ⇒ (µ = U ∧∆′′′ ⊆ ∆̂′)

∆; Γ `µ e1 e2 : τ2;∆′′′

(A.App)

∆i; Γ `µ ei+1 : τi+1;∆i+1 i ∈ 1..(n− 1) n ≥ 0

∆0; Γ `µ {l1 = e1, . . . , 1n = en} : {l1 : τ1, . . . , ln : τn};∆n

(A.Rec)
∆; Γ `µ e : {l1 : τ1, . . . , ln : τn};∆′

∆; Γ `µ e.li : τi;∆
′

(A.Proj)

∆; Γ `µ e : τ ;∆′

∆; Γ `µ ref e : τ ref ;∆′
(A.Ref)

∆; Γ `µ e : τ ref ;∆′

∆; Γ `µ !e : τ ;∆′
(A.Deref)

∆; Γ `µ e1 : τ ref ;∆′

∆′; Γ `µ e2 : τ ;∆′′

∆; Γ `µ e1 := e2 : unit;∆′′
(A.Assign)

∆; Γ `µ e : t;∆′ Γ�∆′ (t) = τ

∆; Γ `µ cont e : τ ;∆′
(A.Con)

∆; Γ `µ e : τ ;∆′ Γ(t) = τ

∆; Γ `µ abst e : t;∆′
(A.Abs)

∆′ ⊆ ∆

∆; Γ `U update∆′
: unit;∆′

(A.Update)
∆; Γ `µ e : τ ′;∆′′ Γ ` τ ′ <: τ ∆′ ⊆ ∆′′

∆; Γ `µ e : τ ;∆′
(A.Sub)

∆; Γ `µ e : τ ;∆1 ∆1; Γ `µ e′ : τ ;∆2

∆2; Γ `µ e1 : τ ′;∆3 ∆2; Γ `µ e2 : τ ′;∆4

∆; Γ `µ if e = e′ then e1else e2 : τ ′;∆3 ∩∆4

(A.If)

∆′ ⊆ ∆
∆′; Γ `U e1 : τ ′;∆1 ∆; Γ `U e2 : τ ′;∆2

∆; Γ `U if update∆′
= 0 then e1else e2 : τ ′;∆1 ∩∆2

(A.If.Update)

Γ `P P : τ

Γ, t = τ ′ `P P : τ
Γ ` τ ′ OK

Γ `P type t = τ ′ in P : τ

(A.Type)
Γ′ = Γ, z : τ1

µ;∆;∆′
−→ τ2

∆; Γ′, x : τ1 `µ e : τ2;∆′ Γ′ `P P : τ

Γ `P fun zµ;∆;∆′
(x : τ1) : τ2 = e in P : τ

(A.LetF)

∅; Γ `N v : τ ′; ∅ Γ, z : τ ′ ref `P P : τ

Γ `P var z : τ ′ = v in P : τ
(A.LetV)

∆; Γ `U e : τ ;∆′

Γ `P e : τ
(A.Exp)

Γ ` τ <: τ ′

Γ ` int <: int (A.Sub.Int) Γ, t = τ ` t <: t (A.Sub.Type)
Γ ` τ <: τ ′ Γ ` τ ′ <: τ

Γ ` τ ′ ref <: τ ref
(A.Sub.Ref)

Γ ` τ2 <: τ1 Γ ` τ ′1 <: τ ′2
∆′

2 ⊆ ∆′
1 (µ2 = U) ⇒ (µ1 = U)

Γ ` τ1
µ1;∆1;∆′

1−→ τ ′1 <: τ2
µ2;∆2;∆′

2−→ τ ′2

(A.Sub.Fun)
τ1 <: τ ′1 i ∈ 1..n

{l1 : τ1, . . . , ln : τn} <: {l1 : τ ′1, . . . , ln : τ ′n}
(A.Sub.Rec)

Γ ` b : τ

∆; Γ, x : τ `µ e : τ ′;∆′

Γ ` λ(x).e : τ
µ;∆;∆′
−→ τ ′

(A.Bind.Fun)
∅; Γ `N e : τ ; ∅

Γ ` e : τ
(A.Bind.Expr)

Γ ` Ω; H, e : τ Ω; Φ ` H

` Ω Ω;Φ ` H
∆; Γ, Ω, Φ `U e : τ ;∆′

Γ ` Ω; H, e : τ

dom(Φ) = dom(H)
∀z 7→ (τ, e) ∈ H. ∅; Φ `N e : τ ; ∅ ∧ Φ(z) = τ ref
∀z 7→ (τ, λ(x).e) ∈ H. Γ ` λ(x).e : τ ∧ Φ(z) = τ
∀r 7→ (·, e) ∈ H. ∅; Φ `N e : τ ; ∅ ∧ Φ(r) = τ ref

Ω; Φ ` H
Type environment typing,̀ Ω, has a standard definition, essentially ensuring that there are no free type names.

Figure 8: Capability typing for Proteus programs

The type system is given in Figure 8, with judgments∆;Γ `µ

e : τ ;∆′ for expressions, andΓ `P P : τ for programs. For
expression typings,∆ is the capability beforee is evaluated, and
∆′ is the capability afterward. Each rule is actually a family of
rules parameterized by anupdateabilityµ which indicates whether
a dynamic update may be performed while evaluating the given
expression. This is used to rule out dynamic updates in undesirable
contexts, as we explain in the next subsection.

Typingupdate andcont e. The capability∆′ onupdate∆′

lists those types thatmust not changedue to a dynamic update.
Since any other type could change, the (A.Update) rule assumes
that the capability can be at most∆′ following the update. The
(A.Con) rule states that to concretely access a value of typet,
the typet must be defined inΓ, restricted to types listed in ca-
pability ∆′. Thus, to type checkdispatch in Figure 3, we must
annotate theupdate in let u1 = update in ... with a
capability{fdtype, req, sockhandler}, since these types are used
by con expressions following that point withindispatch. By
the same reasoning, the annotation on theu2 update would be
{req, sockhandler}, and theu3 update annotation can be empty.
The (A.Update) rule requires updateabilityU; updates cannot be
performed in a non-updateable (N) context.

(A.Update) assumes that anyupdate could result in an up-
date at run time. However, we can make our analysis more pre-
cise by incorporating the effects of a dynamic check. In particular,
(A.If.Update) checksif when the guard isupdate∆′

= 0, which
will be true only if an update takes place at run time. Therefore, the
input capability ofe1 is ∆′, while the input capability ofe2 is ∆.

Function calls.Function types have an annotationµ;∆;∆′,
where ∆ is the input capability and∆′ is the output capabil-
ity. If calling a function could result in an update, the update-
ability µ must beU. Thus, in Figure 3, using the annotations
on update mentioned above, the type fordispatch would be

req
U;∆;∅−→ handResult, for some∆ satisfying the condition

{req, fdtype, sockhandler} ⊆ ∆

In the (A.Update) rule, the output capability is bounded by the an-
notation on theupdate; in the (A.App) rule, the caller’s output
capability∆′′′ is bounded by the callee’s output capability∆̂′ for
the same reason. This is expressed in the conditional constraint
(µ̂ = U) ⇒ (µ = U . . ., which also indicates the caller’s up-
dateabilityµ must allow the update. If the called function cannot
perform an update, then the caller’s capability and updateability
need not be restricted. We will take advantage of this fact in how
we define type transformer functions, described below.

A perhaps unintuitive effect of (A.App) is that a functionf ’s
output capability must mention those types used concretely by its
callers following calls tof. To illustrate, say we modify the type of
post in Figure 2 to beint → int rather thanhandResult → int. As
a result,loop would have to concretize thehandResult returned by
dispatch before passing it topost, resulting in the code

let i = post (conhandResult (dispatch req))...

To type check thecon would require the output capability of
dispatch to includehandResult, which in turn would require that
handResult appear in the capabilities of each of theupdate points
in dispatch, preventinghandResult from being updated.

Another unintuitive aspect of (A.App) is that to call a function,
we would expect that the caller’s capability must be compatible
with (i.e., must be a superset of) the function’s input capability, but

updateOK(upd, Ω, H, ∆) =
Γ = types(H)∧

dom(∆) ∩ dom(upd.UN) = ∅ ∧ bindOK[Γ]upd
(a)

∧
` U [Ω]upd∧
∀t 7→ (τ, c) ∈ upd.UN.

∅;U [Ω, Γ]upd `N c : Ω(t)
N;∆′;∆′′
−→ τ ; ∅

(b)

∧
∀z 7→ (τ, bv) ∈ upd.UB. U [Ω, Γ]upd ` bv : τ∧

bv = e ⇒ ∃τ ′. Γ(z) = τ ′ ref

U [Ω]upd ` heapType(τ) <: Γ(z)
(c)

∧
∀z 7→ (τ, bv) ∈ upd.AB. U [Ω, Γ]upd ` bv : τ

Figure 9: Precondition for update∆ operational rule

this condition is not necessary. Instead, the type system assumes
that all calls will be to a function’s most recent version, which will
be guaranteed at update-time to be compatible with the program’s
type definitions (see§4.3). In effect, the type system approximates,
for a given update point, the concretions in code that an updating
function couldreturn to, but not code it will later call, which is
guaranteed to be safe. This is critical to avoid restricting updates
unnecessarily.

Other Rules.Unlike cont e expressions,abst e expressions
place no constraint on the capability. This is because a dynamic
update that changes the definition oft from τ to τ ′ requires a well-
typed type transformerc to rewriteabst e to abst (c(e)), which
will always be well-typed assuming suitable restrictions onc de-
scribed in the next subsection.

Turning to program typing, the (A.type) rule adds a new type
definition to the global environment, and the (A.LetF) rule simply
checks the function’s body using the capabilities and updateability
defined by its type. Sincev is a value and cannot effect an update,
the (A.LetV) rule checks it with an empty capability∆ and update-
ability N. Finally, the (A.Exp) rule type checks the body of the
program using an arbitrary capability and updateabilityU to allow
updates.

Allowing subtyping adds flexibility to programs and to their up-
dates. The interesting rule is (A.Sub.Fun) for function types. Out-
put capabilities are contravariant: if a caller expects a function’s
output capability to be∆, it will be a conservative approximation
if the function’s output capability is actually larger. There is no re-
striction on the input capability for updateable functions, since we
always assume them to be compatible with the current set of type
definitions for the program. A function that performs no updates
can be a subtype of one that does, assuming they have compati-
ble capabilities. During type checking, subtyping is invoked by the
(A.Sub) rule, which can simultaneously coarsen (makes smaller)
the output capability∆. Intuitively, this is always sound because it
will put a stronger restriction on limits imposed by prior updates.

We need additional typing judgments to ensure the well-
formedness of configurations and the consistency of heaps. These
properties are expressed by theΓ ` Ω; H, e : τ andΩ;Φ ` H
judgments respectively. An additional judgmentΓ ` b : τ is used
for typing heap bindings.

4.3 Operational Semantics
The dynamic semantics from Figure 5 remains unchanged with

the exception of theupdateOK(−) predicate for (UPDATE), shown
in Figure 9. The two timing-related changes are highlighted by
the boxes labeled (a) and (b). First,∆, taken fromupdate∆,

replacese as the last argument. This is used in (a) to syntactically
check that no types mentioned in∆ are changed by the update.
Change (a) also refers tobindOK[Γ]upd to ensure that all top-
level bindings in the heap that use types inupd.UN concretely, as
indicated by their input capability, are also replaced (the definition
is straightforward and not shown). This allows the type system to
assume that calling a function is always safe, and need not impact
its capability. Together, these two checks are analogous to the con-
free dynamic check to ensure proper timing.3

Type transformers provided for updated types must not, when in-
serted, violate assumptions made by the updateability analysis. In
particular, eachabst e appearing in the program type checks with
some capability prior to an update, i.e.,∆;Γ `µ abst e : τ ;∆′.
If type t is updated with transformerc, we require∆;Γ `µ

abst (c e) : τ ;∆′. Sinceabst e expressions could be anywhere
at update time, and could require a different capability∆ to type
check, condition (b) conservatively mandates that transformersc
must check in an empty capability, and may not perform updates
(c’s type must have updateabilityN). These conditions are suffi-
cient to ensure type correctness. Otherwise, a transformer function
c is like any other function. For example, if it uses some typet con-
cretely, it will have to be updated ift is updated. The ramifications
of this fact are explored in§5.

Finally, we allow bindings to updated at subtypes, as indicated by
condition (c). This is crucial for functions, because as they evolve
over time, it is likely that their capabilities will change depending
on what functions they call or what types they manipulate. For-
tunately, we can always update an existing function with a func-
tion that causes no updates. In particular, say functionf has type

t
U;{t,t′};{t,t′}−→ t′, wheret = int andt′ = int. Say we add a new

typet′′ = int and want to changef to be the following:

fun f(x : t) : t′ =
let y = cont′′ abst′′ 1 in
let z = cont x in abst′ z + y

The expected type of this function would bet
N;{t,t′′};{t,t′′}−→ t′, but

it could just as well be given typet
U;{t,t′,t′′};{t,t′,t′′}−→ t′, which

is a subtype of the original, and thus an acceptable replacement.
Replacements that containupdate or call functions that contain
update are more rigid in their capabilities. We expect that experi-
menting with an implementation of Proteus will help us understand
how this fact affects the program’s ability to update itself over time.

4.4 Inference
It is straightforward to construct a type inference algorithm for

our capability type system. In particular, we simply extend the def-
inition of capability∆ to include variablesϕ and updateabilityµ
to include variablesε. Then we take a normal Proteus program and
decorate it with fresh variables on each function definition, func-
tion type, andupdate expression in the program. We also adjust
the rules to use an algorithmic treatment of subtyping, eliminating
the separate (A.Sub) rule and adding subtyping preconditions to
the (A.App) and (A.Assign) rules as is standard. This allows the
judgment to be syntax-directed.

As a result of these changes, conditions imposed on capability
variables by the typing and subtyping rules become simple set and
term constraints [11]. A solution consists of a substitutionσ, which
is a map from variablesϕ to capabilities{t1, . . . , tn}, and from

3Note that we could combine this with the con-free dynamic check
as follows: letUN′ = UN restricted to those types in∆. If UN′

is non-empty, and con-free check usingUN′ succeeds, then the
update is safe.

variablesε to updateabilities eitherU or N. The constraints can
be solved efficiently with standard techniques in timeO(n3) in the
worst case (but far better on average), wheren is the number of
variablesϕ or set constants{·} mentioned in the constraints. The
constraints have the following forms (shown with the rules that in-
duce them):

(1) Γ ` τ1 <: τ2 (A.Sub)
(2) ε = U (A.Update)
(3) (µ̂ = U) ⇒ C (A.App), (A.Sub)
(4) ϕ ⊆ ∆ (A.Update), (A.App)
(5) t ∈ ∆ (A.Con)

For updateabilities, we want thegreatestsolution; that is, we
want to allow as many functions as possible to perform updates
(with an unannotated program, this will vacuously be the case). For
the capabilities, we are interested in theleastsolution, in which we
minimize the set to substitute forϕ, since it will permit more dy-
namic updates. Forupdateϕ, a minimalϕ imposes fewer restric-
tions on the types that may be updated at that point. For functions

τ
ε,ϕ;ϕ′
−→ τ ′, the smallerϕ′ imposes fewer constraints on subtypes,

which in turn permits more possible function replacements. When
using inference for later versions of a program, we must introduce
subtyping constraints between an old definition’s (solved) type and
the new version’s to-be-inferred one. This ensures that the new
definition will be a suitable dynamic replacement for the old one.

Inferring update points. Using the inference system, we can
take a program that is absent ofupdate expressions, and in-
fer places to insert them that are con-free for all types. Define a
source-to-source rewriting functionrewrite : P → P ′ that inserts
updateϕ at various locations throughout the program. Then we
perform inference, and remove all occurrences ofupdateϕ for
which ϕ is not∅ (call theseuniversalupdate points as they do not
restrict the types that may be updated). In the simplest case, the
rewriting function could insertupdateϕ just before a function is
about to return. Adding more points implies greater availability,
but longer analysis times and more runtime overhead. Intuitively,
this approach will converge because the annotationsϕ on update
points are unaffected by those on other update points; rather they
are only impacted by occurrences ofcon in their continuations.

Preliminary Implementation.We are currently implement-
ing Proteus for C programs. We use CIL (C Intermediate Lan-
guage) [16] for C code parsing and source-to-source transforma-
tion, and BANSHEE [14] for constraint solving. We have im-
plemented the updateability analysis to operate in three stages.
First, it automatically insertsabst andcont coercions for uses
of typedef, product (struct), sum (union) and enumeration
(enum) types. Second, it considersupdate checks just before
eachreturn statement. Third, it performs capability inference,
removingupdate checks within functions with updateabilityN,
and may removeupdates that are not universal.

C’s weak type system and low level of abstraction create chal-
lenges not present in a higher-level language like ML or Java. For
example, the use of unsafe casts and/or the address-of (&) oper-
ator can reveal a type’s representation through an alias. Say we
have typestruct S { int x; int y; }, and variablestruct
S *p. If we permit taking the address ofp’s first field, &(p->x)
having typeint *, then an update tostruct S to change the type
of x to int * would lead top->x and the alias ascribing different
types to the same storage. To prevent this, for the time being we
conservatively restrictstruct S from being updated at all. Simi-
larly, unsafe casts over function pointers conservatively force them

to have updateabilityN, which can have a ripple effect throughout
the program, reducing the number of possibleupdate points.

We have run our preliminary analysis implementation on a num-
ber of open-source server programs:vsftpd, apache, opensshd,
andbind. This demonstrates the feasibility of our analysis. For
example, running it on the 232Klocbind code takes 80 seconds.4

Forvsftpd more than half of the types (9/16) and potential update
points (returns) were discovered to be updateable, with roughly
half of the latter universal (325/700). For the other examples fewer
update points were found, reflecting the conservatism of the current
analysis. We are working on addressing C’s lower-level features
which will be critical to making our implementation practical. Also
necessary is an investigation of what coding styles would increase
updateability; the examples considered here being written without
update in mind.

4.5 Properties
The two important properties of the updateability analysis are

soundness and predictability. As with the dynamic system, sound-
ness is proved viapreservationandprogresslemmas. The former
is stated as follows:

Lemma 4.1 (Preservation). If ` Ω; H, e : τ then

1. If Ω; H, e → Ω; H ′, e′ then ` Ω; H ′, e′ : τ .

2. If Ω; H, e
upd−−→ Ω′; H ′, e′ then ` Ω′; H ′, e′ : τ or else

e′ = UpdEx.

The proof of part (1) is mostly standard. However, the proof of
part (2) is more challenging, and reduces to proving the following
lemma, which states that valid updates preserve typing:

Lemma 4.2 (Program Update Safety). If ` Ω; H, e : τ and
updateOK(upd, Ω, H, ∆) then ` U [H]Ω;U [H]upd,U [e]upd :
τ .

A core element of this proof is that we must show that by chang-
ing the named types listed inupd.UN we will not invalidate code in
the existing program. We do this by proving the following lemma:

Lemma 4.3 (Update Capability Weakening). If ∆;Γ `µ

E[update∆′′
] : τ ;∆′ then∆′′; Γ `µ E[update∆′′

] : τ ;∆′.

This states that for any expression that hasupdate∆′′
as its re-

dex, we can typecheck that whole expression using capability∆′′.
In turn, this implies that the existing program could only use the
types listed in∆′′ concretely, and therefore it should be safe to
update the other types in the program.

Another important element of the Program Update Safety lemma
is that the insertion of type transformers will preserve type-safety.
This must take into account that an inserted transformer will not
have an adverse effect on the capability. The following lemma
states that as long as a given expressione will not perform an up-
date, it is always safe to increase its capability, and thus to insert it
at an arbitrary program point:

Lemma 4.4 (Capability strengthening). If ∆;Γ `N e : τ ;∆′

then for all∆′′ we have∆ ∪∆′′; Γ `N e : τ ;∆′ ∪∆′′.

Proofs will appear in the extended version [19].

4We ran the analysis on a dual Xeon 2.8GHz with 2GB of RAM
running Red Hat Enterprise Linux WS.

5. EXTENSION: BINDING DELETION
While most changes we have observed in source programs are

due to added or replaced definitions, occasionally definitions are
deleted as well. It is also desirable to support removing definitions
dynamically, for two reasons:

1. Dead bindings will unnecessarily consume virtual memory,
which could be problematic over time.

2. Dead functions could hamper dynamic updates, since update
well-formedness dictates that if some typet is updated, any
function f that concretely manipulatest must also be up-
dated. Therefore, even if some functionf has been removed
from the program sources, a future update tot would neces-
sitate updatingf. But how does one update a function that is
no longer of use? This issue also arises with old type trans-
former functions.

Removing dead code reduces to a garbage collection problem. The
programmer can specify which bindings should be eligible for dele-
tion at update-time, and then those bindings not reachable by the
current program can be removed. Bindings that are unreachable
but not specified as dead should be preserved, presumably because
they still exist in the program source and might be used later. For-
mally, we would modify updatesupd to include a set of external
variable namesDB to be deleted. The (UPDATE) operational rule
could then be changed to include the precondition

upd.DB ⊆ deadVar(H, E[update∆])
H′ = delete(H, e, DB)
updateOK(upd, Ω, H′, ∆)

Here,deadVar() traverses the current program to discover which
bindings are unreachable, and if all those specified inDB are un-
reachable, they are removed before the update proceeds (usingH ′).
We could also imagine “marking” bindings eligible for deletion,
and removing them as they die.

6. RELATED WORK
Dynamic software updating has been used in industry for many

years and is well-studied in academia. To our knowledge, ap-
proaches taken in industry are often application-specific, or rely
on redundant hardware, limiting their applicability. Academic ap-
proaches range from being quite flexible but type-unsafe, to type-
safe but quite inflexible.

The systems of which we are aware are either less safe or less
flexible than our approach. Many systems are either not type safe at
all [7, 13, 10, 4], or could admit dynamic type errors [1]. Some sys-
tems are type-safe but not representation consistent [12, 6]. For ex-
ample, Hicks [12] ensures type-safety by copying and transforming
values from their old representation to the new; existing code will
continue to use the old, stale values unless the programmer manu-
ally ensures otherwise. Other systems are too restrictive. For ex-
ample, updates may only be permitted to individual class instances
whose type cannot change [17, 5, 13, 18], or else representation
changes are only permitted for abstract types or encapsulated ob-
jects [2, 18, 8]. In many cases, updates to active code are disal-
lowed [8, 15, 7, 10, 18], and data stored in local variables may not
be transformed [12, 10, 7, 13].

A number of systems use techniques that bear some resemblance
to our approach. Dynamic ML [8] supports updating modules
definingabstracttypest. Since by definition clients of such a mod-
ule must use values of typet abstractly, the module can be updated
if none of its functions are on the call-stack (i.e. it isinactive).

Our use ofabst andcont coercions generalizes this idea to non-
abstract named types, and permits more fine-grained determination
of safe update points. In particular, we could discover pointswithin
an abstract module at which it could be safely updated. This allows
our conFree[−]− check to be more precise than Dynamic ML’s
“activeness” check. Dynamic ML has no static notion of proper
update timing, as we do with our updatability analysis.

Duggan [6] supports dynamic updates to named types, which use
constructsfold andunfold to create and destruct values of named
type (similar to ourabst andcont). However, updated programs
are not representation-consistent. Rather, programmers must pro-
vide transformer functions that go both ways: from the old to the
new representation and from the new version back to the old. Oc-
currences ofunfoldwill dynamically compare the expected version
of the t value with its actual version and apply some composition
of forward or backward transformers to convert the value. This ap-
proach ensures well-formed updates are always well-timed. How-
ever, programs are harder to reason about. We might wonder: will
the program still behave properly when converting at value for-
ward for new code, backward for old code, and then forward again?
Moreover, it may not always be possible to write backward trans-
formers, since updated types often contain more information than
their older versions (§2).

Boyapati et al. [2] and the K42 operating system [18] ensure
well-timed updates to objects. Both systems rely on object encap-
sulation to guarantee that no active code depends on an object’s rep-
resentation when the object is updated. In Boyapati et al., proper
timing is enforced by programmer-defined database-style transac-
tions: if an update occurs at an inopportune time, they abort the
current transaction, perform the update, and then restart the trans-
action. In K42, an object to be updated is madequiescentby block-
ing new threads from using it, and waiting until all current threads
that could be using it have terminated. Our approach uses the more
general notion of con-freeness, rather than encapsulation. Transac-
tions are approximated by automatically- or programmer-inserted
update points, but without the benefit of rollback. To mimic this
approach in our setting, we could forceupdate points to synchro-
nize in different threads; an update could proceed only when all
threads have reached safe update points. We intend to flesh out this
idea in future work.

While our updateability analysis is new, its general formulation
is similar to other capability type systems [21, 20, 9]. For example,
capabilities in the Calculus of Capabilities [21] statically prevent
a runtime dereference of a dangling pointer by approximating the
runtime heap. Our capabilities prevent runtime access to a value
whose representation might have changed by approximating the
current set of legal types.

7. CONCLUSIONS
In this paper we have presented Proteus, a simple calculus for

modeling type-safe dynamic updates in C-like languages. To en-
sure that updates are type-safe in the presence of changes to named
types, Proteus exploits the idea of “con-t-freeness:” a given update
point is con-t-free if the program will never use a value of typet
concretely at its old representation from then on. We have shown
that con-freeness can be checked dynamically, and automatically
inferred statically using our novelupdateability analysis.

In the short term, we plan to implement Proteus in the context
of single-threaded C, to explore its feasibility for existing non-stop
services. Our next step will be to consider the addition of threads,
and ultimately move to distributed programs, such as server farms
operating concurrently on a shared database whose schema must
be evolved. We also plan to explore reasoning techniques for other

useful properties, such as update availability. Currently we can dis-
cover functions for which an update is never possible; conversely,
we wish to understand how often an update is possible for some
function, which depends more on runtime behavior. In the longer
term, we wish to adapt our techniques to functional and object-
oriented languages. On the one hand, these languages will be eas-
ier to reason about due to their strong abstraction and encapsulation
properties. On the other hand, advanced features such as closures
and objects are more challenging to update.

Acknowledgements.We thank Nikhil Swamy, Manuel Oriol,
and the anonymous referees for helpful comments on drafts of this
paper. This work was supported by a Royal Society University Re-
search Fellowship, a Marconi EPSRC CASE Studentship, EC FET-
GC project IST-2001-33234 PEPITO, and NSF Contract #0346989.

8. REFERENCES
[1] J. L. Armstrong and R. Virding. Erlang — An Experimental Telephony

Switching Language. InXIII International Switching Symposium, Stockholm,
Sweden, May 27 – June 1, 1991.

[2] C. Boyapati, B. Liskov, L. Shrira, C-H. Moh, and S. Richman. Lazy modular
upgrades in persistent object stores. InProc. OOPSLA, 2003.

[3] V. Breazu-Tannen, T. Coquand, C.A. Gunter, and A. Scedrov. Inheritance as
implicit coercion.Information and computation, 93(1):172–221, 1991.

[4] B. Buck and J. K. Hollingsworth. An API for runtime code patching.Journal
of High Performance Computing Applications, 14(4):317–329, 2000.

[5] S. Drossopoulou and S. Eisenbach. Flexible, source level dynamic linking and
re-linking. InProc. ECOOP 2003 Workshop on Formal Techniques for Java
Programs, 2003.

[6] D. Duggan. Type-based hot swapping of running modules. InProc. ICFP,
2001.

[7] O. Frieder and M. E. Segal. On dynamically updating a computer program:
From concept to prototype.Journal of Systems and Software, 14(2):111–128,
September 1991.

[8] S. Gilmore, D. Kirli, and C. Walton. Dynamic ML without dynamic types.
Technical Report ECS-LFCS-97-378, LFCS, University of Edinburgh,
December 1997.

[9] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in Cyclone. InProc. PLDI, 2002.

[10] D. Gupta.On-line Software Version Change. PhD thesis, Department of
Computer Science and Engineering, Indian Institute of Technology, Kanpur,
November 1994.

[11] N. Heintze.Set-Based Program Analysis. PhD thesis, Department of
Computer Science, Carnegie Mellon University, October 1992.

[12] M. W. Hicks.Dynamic Software Updating. PhD thesis, Department of
Computer and Information Science, The University of Pennsylvania, August
2001.

[13] G. Hjálmtýsson and R. Gray. Dynamic C++ classes, a lightweight mechanism
to update code in a running program. InProc. USENIX, June 1998.

[14] J. Kodumal. BANSHEE: A toolkit for building constraint-based analyses.
http://bane.cs.berkeley.edu/banshee.

[15] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime support
for type-safe dynamic Java classes. InProc. ECOOP, 2000.

[16] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of C programs.Lecture
Notes in Computer Science, 2304:213–228, 2002.

[17] A. Orso, A. Rao, and M.J. Harrold. A technique for dynamic updating of Java
software. InProc. IEEE International Conference on Software Maintenance
(ICSM), 2002.

[18] C. Soules, J. Appavoo, K. Hui, R. W. Wisniewski, D. Da Silva, G. R. Ganger,
O. Krieger, M. Stumm, M. Auslander, M. Ostrowski, B. Rosenburg, and
J. Xenidis. System support for online reconfiguration. InProc. USENIX, June
2003.

[19] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu.Mutatis Mutandis:
Safe and predictable dynamic software updating (extended version). To appear.

[20] D. Walker. A type system for expressive security policies. InProc. POPL,
pages 254–267, January 2000.

[21] D. Walker, K. Crary, and G. Morrisett. Typed memory management via static
capabilities.ACM Transactions on Programming Languages and Systems,
22(4):701–771, 2000.

