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Abstra
t

Software systems are be
oming heterogeneous: instead of a small number of

large programs from well-established sour
es, a user's desktop may now 
onsist

of many smaller 
omponents that intera
t in intri
ate ways. Some 
omponents

will be downloaded from the network from sour
es that are only partially trusted.

A user would like to know that a number of se
urity properties hold, e.g. that

personal data is not leaked to the net, but it is typi
ally infeasible to verify that

su
h 
omponents are well-behaved. Instead, they must be exe
uted in a se
ure

environment that provides �ne-grain 
ontrol of the allowable intera
tions between

them, and between 
omponents and other system resour
es.

In this paper, we 
onsider the problem of assembling 
on
urrent software sys-

tems from untrusted or partially trusted o�-the-shelf 
omponents, using wrapper

programs to en
apsulate 
omponents and enfor
e se
urity poli
ies. We introdu
e

a model programming language, the box-� 
al
ulus, that supports 
omposition of

software 
omponents and the enfor
ement of information 
ow se
urity poli
ies.

Several example wrappers are expressed using the 
al
ulus; we explore the del-

i
ate se
urity properties they guarantee. We present a novel 
ausal type system

that stati
ally 
aptures the allowed 
ows between wrapped possibly-badly-typed


omponents; we use it to prove that an example ordered pipeline wrapper enfor
es

a 
ausal 
ow property.
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1 Introdu
tion

Software systems are evolving. In
reasingly, monolithi
 appli
ations are being repla
ed

with assemblages of software 
omponents 
oming from di�erent sour
es. Instead of a

small number of large programs from well-established suppliers, nowadays a user's

desktop is made up of many smaller appli
ations and software modules that intera
t

in intri
ate ways to 
arry out a variety of information pro
essing tasks. Moreover,

whereas it used to be that a software base was fairly stati
 and 
ontrolled by a system

administrator, it is now easy to download 
ode from the network and even extend

appli
ation programs while they are running. These 
omponents are obtained from

di�erent untrusted or partially-trusted sour
es and they may be faulty or mali
ious,

or designed with a weaker se
urity poli
y that the user requires { what is legitimate

marketing data to a vendor may be 
onsidered sensitive by a user. It is diÆ
ult for a

user to gain assuran
e that the 
omposed system is se
ure.

In su
h 
uid operating environments, traditional se
urity me
hanisms and poli
ies

appear almost irrelevant. While passwords and a

ess 
ontrol me
hanisms are adequate

to prote
t the integrity of the 
omputer system as whole, they utterly fail to address

the issue of prote
ting the user from downloaded 
ode being run from her a

ount

[21, 15, 27℄. Approa
hes su
h as the Java sandbox that promise se
urity by isolation

are not satisfa
tory either, as they propose a model in whi
h 
omponents 
an either

intera
t freely or not at all [16℄.

While it is not feasible, in general, to analyse or modify third-party software pa
k-

ages, it is possible to inter
ept the 
ommuni
ations between a pa
kage and the other

parts of the system, interposing 
ode at the boundaries of the di�erent software 
om-

ponents to observe and modify the data passing through [22, 44, 13, 12, 10, 4, 15℄.

Interposition te
hniques e�e
tively en
apsulate untrusted 
omponents in wrapper pro-

grams that have full 
ontrol over the intera
tions between en
apsulated 
omponents

and the OS and over the intera
tions among 
omponents. The 
ode of a wrapper 
an,

for instan
e, perform a

ess 
ontrol 
he
ks, audit, attempt to dete
t intruders, and even

monitor 
overt 
hannels. Clearly, writing wrappers should not be left to the end-user.

Rather we envision wrappers as reusable software 
omponents; users should then only

have to pi
k the most appropriate wrappers, 
ustomize them with some parameters

and install them. All of this pro
ess should be dynami
: wrappers must be no harder

to add to a running system than new appli
ations. Ultimately, end users will require

a 
lear des
ription of the properties guaranteed by their wrappers.

Pra
ti
al work on wrappers underlines the diÆ
ulty of understanding exa
tly what

these guarantees are. For example, in [12℄ Fraser, Badger and Feldman presented a

system that splits the task of writing a wrapper into two parts. The wrapper's body

is written in a variant of C 
alled the Wrapper De�nition Language. The dynami


aspe
ts of 
reating wrappers and instantiating 
on
urrently exe
uting 
omponents are

spe
i�ed in the Wrapper Life Cy
le framework. While quite expressive, their approa
h

does not provide guarantees that the wrappers a
tually enfor
e the desired se
urity

poli
ies. The powerful wrapper language, the fa
t that all wrappers exe
ute in kernel

mode, and the fa
t that 
omponents are 
on
urrent 
ombine to make it diÆ
ult to

understand pre
isely what properties a wrapper enfor
es.

Our work in the 
urrent paper explores se
ure 
omposition using wrappers, fo-


ussing on the rigorous statement and proof of their se
urity properties. To express and

reason about wrappers we require a small programming language, with a well-de�ned

semanti
s, that allows the 
omposition of 
on
urrently-exe
uting software 
omponents

to be expressed straightforwardly and also supports the enfor
ement of se
urity poli-
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ies. We have therefore abstra
ted the essential aspe
ts of the problem in a pro
ess


al
ulus: the box-� 
al
ulus, introdu
ed in Se
tion 2. Box-� is a minimal extension

of the �-
al
ulus [26℄ with en
apsulation; it is expressive enough to 
ode non-trivial

wrappers and the 
on
urrent 
omposition of 
omponents, but retains the simpli
ity

and tra
table semanti
s needed for proving properties. Moreover Pi
t [29℄ demon-

strates how to build a real programming language above a �-
al
ulus 
ore; a similar

approa
h 
ould be used for box-�.

Several wrappers are expressed in box-� in Se
tion 3. We begin with a simple exam-

ple, the wrapper W

1

. It en
apsulates a single 
omponent and 
ontrols its intera
tions

with the environment, limiting them to two 
hannels in and out . W

1

is written as a

unary 
ontext in Figure 1.

W

1

( )

def

= (� a)

�

a[ ℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

Figure 1: The �ltering wrapper W

1

in box-�.

This 
reates a box with a new name a, installing in parallel with it two forwarders

{ one that re
eives messages from the environment on 
hannel in and sends them to

the wrapped program, and one that re
eives messages from the wrapped program on


hannel out and sends them to the environment. An arbitrary program P (possibly

mali
ious) 
an be wrapped to giveW

1

(P ); the design of the 
al
ulus and ofW

1

ensures

that no matter how P behaves the wrapped programW

1

(P ) 
an only intera
t with its

environment on the two 
hannels in and out .

The wrapper W

1


ontrols intera
tion between a single 
omponent and its environ-

ment { it �lters messages that the 
omponent 
an send and re
eive, restri
ting it to

a parti
ular interfa
e. A more interesting 
ase o

urs when the intera
tion between

untrusted 
omponents has to be 
ontrolled. In Se
tion 3.3 we introdu
e W

2

, a binary

wrapper that en
apsulates two 
omponents P and Q as W

2

(P;Q), allowing ea
h to

intera
t with the environment in a limited way but also allowing information to 
ow

from P to Q, but not vi
e versa, along a dire
ted 
ommuni
ation 
hannel. The box-�

program of Figure 2 is a simpli�ed version of this example.

(� a; b)

�

a[P ℄ j ! 


a

x:


b

x j b[Q ℄

�

Figure 2: A simpli�ed pipeline wrapper W

2

, en
apsulating P and Q.

Pro
esses P and Q are arbitrary, possibly mali
ious, 
omponents. They are en
ap-

sulated in named boxes, with private names a and b, and pla
ed in parallel with a

forwarder pro
ess on 
hannel 
 from box a to box b. The term 


b

x is an output to


hannel 
 in box b of value x. The term 


a

x:


b

x pre�xes this with an input on 
hannel


 from box a; here the �rst x is a formal parameter that binds the se
ond. The ! oper-

ator indi
ates a repli
ated input, so the forwarder persists after use. The boxes restri
t


ommuni
ation of the en
apsulated pro
esses and ensure that P and Q 
annot inter-

a
t with ea
h other dire
tly; the private names ensure that they 
annot intera
t with

their environment in any other way. This simpli�ed forwarder sends only unordered

asyn
hronous messages; our main example, the wrapper F of Se
tion 3.4, provides
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FIFO 
ommuni
ation on an ordered pipeline (this is related to the NRL pump [23℄, as

dis
ussed in later).

Intuitively, the wrapper W

2

enfor
es an information 
ow poli
y that prevents Q

from leaking se
rets to P . When one attempts to make su
h properties pre
ise, how-

ever, there are many 
hoi
es. A body of model-theoreti
 work on non-interferen
e

uses deli
ate extensional properties of the tra
e sets of systems. In our programming

language setting a more intensional approa
h allows what we believe to be 
learer state-

ments. We start with a labelled transition semanti
s (de�ned in x2.3) that spe
i�es the

input/output behaviour of programs and extend it to represent and propagate 
ausal

dependen
ies expli
itly. In terms of this, one 
an state the desired property as `no

visible a
tion of P is 
ausally dependent on any a
tion of Q'. The 
ausal semanti
s

and property are de�ned in Se
tion 4.

Verifying su
h a 
ausal 
ow property dire
tly 
an be laborious, requiring a 
har-

a
terisation of the state spa
e of a wrapper 
ontaining arbitrary 
omponents. We

therefore introdu
e a type system that stati
ally 
aptures 
ausal 
ows. Sin
e 
ompo-

nents are often provided as obje
t 
ode, whi
h is impra
ti
al for the user to type
he
k,

our type system must admit programs with badly-typed sub
omponents.

The 
ausal type system, given in Se
tion 5, allows us to prove information 
ow

properties of box-� programs. For the example of Figure 2, to stati
ally allow the


ow from a to b but disallow the 
onverse we 
an asso
iate the 
omponents with

prin
ipals p and q, then take a to be a box name whose 
ontents may be a�e
ted by

p, written a :box

fpg

, b to be a box name whose 
ontents may be a�e
ted by p or q,

written b :box

fp;qg

, and 
 to be a 
hannel, 
arrying values of a top type >, whi
h


an be a�e
ted only by p, so 
 : 
han

fpg

>. The fragment is then typable, whereas the


onverse forwarder 


b

x:


a

x is not. The type system also deals with tra
king 
auses

through 
omputation within a wrapper, in
luding 
ommuni
ation of 
hannel names,

and with intera
tion between a wrapper and badly-typed 
omponents. All boxes are

assumed to 
ontain untyped pro
esses; wrapper 
ode is stati
ally typed; run-time type


he
king is required only when re
eiving from a 
omponent.

Further dis
ussion of related work is given in Se
tion 6; Se
tion 7 
on
ludes with

future work. The appendi
es 
ontain outline proofs of the results; full details 
an be

found in the te
hni
al reports [34, 36℄. This paper is an extended version of [35, 37℄.

2 A Boxed � Cal
ulus

The language { known as the box-� 
al
ulus { that we use for studying en
apsulation

properties must allow intera
ting 
omponents to be 
omposed. The 
omponents will

typi
ally be exe
uting 
on
urrently, introdu
ing nondeterminism. It is therefore natural

to base the language on a pro
ess 
al
ulus. The box-� 
al
ulus lies in a large design

spa
e of distributed 
al
uli that build on the �-
al
ulus of Milner, Parrow and Walker

[26℄, in
luding among others the related 
al
uli [2, 8, 11, 30, 32, 38, 40℄. A brief overview

of the design spa
e 
an be found in [33℄; here we highlight the main design 
hoi
es for

box-�.

The 
al
ulus is based on asyn
hronous message passing, with 
omponents intera
t-

ing only by the ex
hange of unordered asyn
hronous messages. Box-� has an asyn-


hronous �-
al
ulus as a sub
al
ulus { we build on a large body of work studying su
h


al
uli, notably [19, 6℄. They are known to be very expressive, supporting many pro-

gramming idioms in
luding fun
tions and obje
ts, and are Turing-
omplete; a box-�

pro
ess may therefore perform arbitrary internal 
omputation. The 
hoi
e of asyn-
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hronous 
ommuni
ation is important as it allows two 
omponents to intera
t without


reating 
ausal 
onne
tions in both dire
tions between them.

Box-� requires fa
ilities for 
onstraining 
ommuni
ation { in standard �-
al
uli, if

one pro
ess 
an send a message to another then the only way to prevent information


owing in the reverse dire
tion is to impose a type system on 
omponents, whi
h

(as observed above) is not appropriate here. We therefore add a boxing primitive {

boxes may be nested, giving hierar
hi
al prote
tion domains; 
ommuni
ation a
ross

box boundaries is stri
tly limited. Underlying the 
al
ulus design is the prin
iple that

ea
h box should be able to 
ontrol all intera
tions of its 
hildren, both with the outside

world and with ea
h other [40℄. Boxes 
an be viewed as prote
tion domains, akin to

operating system-enfor
ed address spa
es. All other 
ommuni
ation, in parti
ular that

between two sibling boxes, must be mediated by 
ode running in the parent. This 
ode


an enfor
e an arbitrary se
urity poli
y, even supporting dynami
ally-
hanging poli
ies

and interfa
es (in 
ontrast to stati
 restri
tion or blo
king operators [7, 41℄).

Turning to the values that may be 
ommuni
ated, it is 
onvenient to allow arbitrary

tuples of names (or other tuples). Note that we do not allow 
ommuni
ation of pro
ess

terms. Moreover, no primitives for movement of boxes are provided, in 
ontrast to most

work 
ited above. The 
al
ulus is therefore entirely �rst order, whi
h is important for

the tra
table theory of behaviour (the labelled transition semanti
s) that we require to

state and prove se
urity properties. The 
al
ulus is also untyped { we wish to 
onsider

the wrapping of ill-understood, probably buggy and possibly mali
ious programs.

2.1 Syntax

The syntax of the 
al
ulus is as follows:

Names We take an in�nite set N of names, ranged over by a; b; 
 et
. (ex
ept

i; j; k; o; p; u; v). Both boxes and 
ommuni
ation 
hannels are named; names also play

the role of variables, as in the �-
al
ulus.

Values and Patterns Pro
esses will intera
t by 
ommuni
ating values whi
h are

de
onstru
ted by pattern-mat
hing by the re
eiver. Values u; v 
an be names or tuples,

with patterns p 
orrespondingly tuple-stru
tured.

u; v ::= x name

h

v

1

:: v

k

i

tuple (k � 0)

p ::= wild
ard

x name pattern

(

p

1

:: p

k

)

tuple pattern

(k � 0, no repeated names)

Pro
esses The main synta
ti
 
ategory is that of pro
esses, ranged over by P;Q. We

introdu
e the primitives in three groups.

Boxes A box n[P ℄ has a name n, it 
an 
ontain an arbitrary pro
ess P . Box names are

not ne
essarily unique { the pro
ess n[0℄ j n[0℄ 
onsists of two distin
t boxes named n,
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both 
ontaining an empty pro
ess, in parallel.

P ::= n[P ℄ box named n 
ontaining P

P j P

0

P and P

0

in parallel

0 the nil pro
ess

: : :

Communi
ation The standard asyn
hronous �-
al
ulus 
ommuni
ation primitives are

xv, indi
ating an output of value v on the 
hannel named x, and xp:P , a pro
ess that

will re
eive a value output on 
hannel x, binding it to p in P . Here we re�ne these with

a tag indi
ating the dire
tion of the 
ommuni
ation in the box hierar
hy. An input tag

� 
an be either ?, for input within a box, ", for input from the parent box, or a name

n, for input from a sub-box named n. An output tag o 
an be any of these, similarly.

For te
hni
al reasons we must also allow an output tag to be ", indi
ating an output

re
eived from the parent that has not yet intera
ted with an input, or n, indi
ating an

output re
eived from 
hild n that has not yet intera
ted. The 
ommuni
ation primitives

are then

P ::= : : :

x

o

v output v on 
hannel x to o

x

�

p:P input on 
hannel x from �

!x

�

p:P repli
ated input

: : :

The repli
ated input !x

�

p:P behaves essentially as in�nitely many 
opies of x

�

p:P

in parallel. This gives 
omputational power, allowing e.g. re
ursion to be en
oded

simply, while keeping the theory simple. In x

�

p:P and !x

�

p:P the names o

urring in

the pattern p bind in P . Empty patterns and tuples will often be elided.

New name 
reation Both box and 
hannel names 
an be 
reated fresh, with the stan-

dard �-
al
ulus (� x)P operator (also known as restri
tion). This de
lares any free

instan
es of x within P to be instan
es of a globally fresh name.

P ::= : : :

(� x)P new name 
reation

In (� x)P the x binds in P . We work up to alpha 
onversion of bound names through-

out. This means, for example, that (� y)x

"

y and (� z)x

"

z denote the same mathemat-

i
al obje
t. We write the free name fun
tion, de�ned in the obvious way for values,

tags and pro
esses, as fn( ), so fn((� y)x

"

y) = fxg. Figure 3 summarizes the syntax of

box-�.

2.2 Redu
tion Semanti
s

The simplest semanti
 de�nition of the 
al
ulus is a redu
tion semanti
s, a one-step

redu
tion relation P ! P

0

indi
ating that P 
an perform one step of internal 
ompu-

tation to be
ome P

0

. We �rst de�ne the 
omplement � of a tag � in the obvious way,

with ? = ? and � = �. We de�ne a partial fun
tion f = g, taking a pattern and a value

and giving, where it is de�ned, a partial fun
tion from names to values.

f

v

= g = fg

f

v

=

x

g = fx 7! vg

f

h

v

1

:: v

k

0

i

=

(

p

1

:: p

k

)

g = f

v

1

=

p

1

g [ : : : [ f

v

k

=

p

k

g if k = k

0

unde�ned, otherwise
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u; v ::= x name p ::= wild
ard

h

v

1

:: v

k

i

tuple x name pattern

(

p

1

:: p

k

)

tuple pattern

P ::= n[P ℄ box named n 
ontaining P

P j P

0

P and P

0

in parallel

0 the nil pro
ess

x

o

v output v on 
hannel x to o

x

�

p:P input on 
hannel x from �

!x

�

p:P repli
ated input

(� x)P new name 
reation

Figure 3: Box-� syntax.

The natural de�nition of the appli
ation of a substitution � (from names to values)

to a pro
ess term P , written �P , is also a partial operation, as the syntax does not

allow arbitrary values in all the pla
es where free names 
an o

ur. We write f

v

=

p

gP

for the result of applying the substitution f

v

=

p

g to P . This may be unde�ned either

be
ause f

v

=

p

g is unde�ned, or be
ause f

v

=

p

g is a substitution but the appli
ation of that

substitution to P is unde�ned. For example, f

h

z z

i

=

x

gx

?

hi

is not de�ned as

h

z z

i

?

hi

is not

in the syntax. Note that the result f

y

=

x

gP of applying a name-for-name substitution

is always de�ned.

This de�nition of substitution leads to a lightweight notion of runtime error. A

more 
onventional notion of runtime error would give errors only when a tuple is used

as a name, e.g. for output. The substitution-based notion is for
ed by our 
hoi
e of

syntax, whi
h disallows values in various pla
es where names may appear. In general

it will report errors sooner than the 
onventional notion.

The de�nition of redu
tion involves an auxiliary stru
tural 
ongruen
e �, de�ned

as the least 
ongruen
e relation su
h that the axioms of Figure 4 hold. This allows the

parts of a redex (an instan
e of the left-hand-side of one of the axioms in Figure 5) to

be brought synta
ti
ally adja
ent.

P j 0 � P

P j Q � Q j P

(P j Q) j R � P j (Q j R)

(� x)(� y)P � (� y)(� x)P

(� x)(P j Q) � P j (� x)Q x 62 fn(P )

(� x)n[P ℄ � n[(� x)P ℄ x 6= n

Figure 4: Stru
tural 
ongruen
e relation.

The redu
tion relation is now the least relation over pro
esses satisfying the axioms

and rules of Figure 5. The (Red Comm) and (Red Repl) axioms are subje
t to the


ondition that f

v

=

p

gP is well-de�ned. The (Red Up) axiom allows an output to the

parent of a box to 
ross the en
losing box boundary. Similarly, the (Red Down) axiom

allows an output to a 
hild box n to 
ross the boundary of n. The (Red Comm) axiom

then allows syn
hronisation between a 
omplementary output and input within the

same box. The (Red Repl) axiom is similar, but preserves the repli
ated input in the

resulting state.
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n[x

"

v j Q℄! x

n

v j n[Q℄ (Red Up)

x

n

v j n[Q℄! n[x

"

v j Q℄ (Red Down)

x

�

v j x

�

p:P ! f

v

=

p

gP (Red Comm)

x

�

v j !x

�

p:P ! !x

�

p:P j f

v

=

p

gP (Red Repl)

P ! Q ) P j R! Q j R (Red Par)

P ! Q ) (� x)P ! (� x)Q (Red Res)

P ! Q ) n[P ℄! n[Q℄ (Red Box)

P � P

0

! Q

0

� Q ) P ! Q (Red Stru
t)

Figure 5: Box-� redu
tion semanti
s.

Communi
ations a
ross box boundaries take two redu
tion steps, as in the following

upwards and downwards 
ommuni
ations.

n[x

"

v℄ j x

n

p:P ! n[0℄ j x

n

v j x

n

p:P

! n[0℄ j f

v

=

p

gP

x

n

v j n[x

"

p:P ℄ ! n[x

"

v j x

"

p:P ℄

! n[f

v

=

p

gP ℄

This removes the need for 3-way syn
hronisations between a box, an output and an

input (as in [40℄), simplifying both the semanti
s and the implementation model.

2.3 Labelled Transition Semanti
s

The redu
tion semanti
s de�nes only the internal 
omputation of pro
esses. The state-

ments of our se
urity properties must involve the intera
tions of pro
esses with their

environments, requiring more stru
ture: a labelled transition relation 
hara
terising the

potential inputs and outputs of a pro
ess. We give a labelled semanti
s for box-� in an

expli
itly-indexed early style, de�ned indu
tively on pro
ess stru
ture by a stru
tured

operational semanti
s. The reader unfamiliar with pro
ess 
al
uli may wish to skim to

the start of Se
tion 3 on a �rst reading.

The labels are

` ::= � internal a
tion

x

o

v output a
tion

x




v input a
tion

where o is any output tag and 
 ranges over tags ?, n, " and n. The labelled transitions


an be divided into those involved in moving messages a
ross box boundaries and those

involved in 
ommuni
ations between outputs and inputs. The movement labels are

x

n

v (sending to 
hild n)

x

n

v (box n re
eiving from its parent)

x

"

v (sending to the parent)

8



We say mv(o) i� o is of the form n or ". The 
ommuni
ation labels are

x

?

v (lo
al output)

x

?

v (lo
al input)

x

n

v (output re
eived from 
hild n)

x

n

v (input a message re
eived from 
hild n)

x

"

v (output re
eived from parent)

x

"

v (input a message re
eived from parent)

Labels syn
hronise in the pairs x




v and x




v. The labelled transition relation has the

form

A ` P

`

�! Q

where A is a �nite set of names and fn(P ) � A; it should be read as `in a state where

the names A may be known to P and its environment, pro
ess P 
an do ` to be
ome

Q'. The relation is de�ned as the smallest relation satisfying the rules of Figure 6. We

write A; x for A [ fxg where x is assumed not to be in A, and A; p for the union of A

and the names o

urring in the pattern p, where these are assumed disjoint.

The labelled semanti
s is similar to a standard � semanti
s, but must also deal with

boxes and with redu
tions su
h as

((� x)
x

n

z) j n[0℄ ! (� x)n[
x

"

z℄

in whi
h a new-bound name enters a box boundary.

In more detail, for the sub
al
ulus without new-binding the labelled transition rules

are straightforward | instan
es of the redu
tion rule (Red Up) 
orrespond to uses of

(Box-1), (Out), and (Par); instan
es of (Red Down) 
orrespond to uses of (Comm),

(Out), and (Box-2); instan
es of (Red Comm) 
orrespond to uses of (Comm), (Out),

and (In). The derivations of the 
orresponding � -transitions 
an be found in the proof of

Lemma 24. The addition of new-binding introdu
es several subtleties, some inherited

from the �-
al
ulus and some related to s
ope extrusion and intrusion a
ross box

boundaries. We dis
uss the latter brie
y.

The (Red Down) rule involves syn
hronisation on the box name n but not on

the 
hannel name x | there are redu
tions su
h as that above with new-bound names

entering box boundaries. To 
orre
tly mat
h this with a � -transition the side-
ondition

for (Res-2) for labels with output tag n requires the bound name to o

ur either in


hannel or value position, and the (Comm) rule reintrodu
es the x binder on the right

hand side.

Similarly, the (Red Up) rule allows new-bound names in 
hannel position to exit a

box boundary, for example in

n[(� x)x

"

z℄ ! (� x)(x

n

z j n[0℄)

The (Res-2) 
ondition for output tag " again requires the bound name to o

ur either

in 
hannel or value position; here the (Box-1) rule reintrodu
es the x binder on the

right hand side.

Redu
tions generated by (Red Comm) involve syn
hronisation both on the tags and

on the 
hannel name. The (Res-2) 
ondition for output tags ?, " and n is analogous to

the standard �-
al
ulus (Open) rule; requiring the bound name to o

ur in the value

but not in the tag or 
hannel. The (Comm) rule for these output tags is analogous

to the standard � rule | in parti
ular, here it is guaranteed that x 2 A. The two

semanti
s 
oin
ide in the following sense.

9



A ` x

o

v

x

o

v

�! 0

(Out)

A ` x

�

p:P

x

�

v

�! f

v

=

p

gP

(
) (In)

A ` P

`

�! P

0

A ` P j Q

`

�! P

0

j Q

(Par)

A ` !x

�

p:P

x

�

v

�! !x

�

p:P j f

v

=

p

gP

(
) (Repl)

A ` P

x




v

�! P

0

A ` Q

x




v

�! Q

0

A ` P j Q

�

�! (� fn(x; v)�A)(P

0

j Q

0

)

(Comm)

A ` P

x

"

v

�! P

0

A ` n[P ℄

�

�! (� fn(x; v) �A)(x

n

v j n[P

0

℄)

(Box-1)

A ` n[P ℄

x

n

v

�! n[x

"

v j P ℄

(Box-2)

A ` P

�

�! P

0

A ` n[P ℄

�

�! n[P

0

℄

(Box-3)

A; x ` P

`

�! P

0

A ` (� x)P

`

�! (� x)P

0

(a) (Res-1)

A; x ` P

y

o

v

�! P

0

A ` (� x)P

y

o

v

�! P

0

(b) (Res-2)

A ` P

`

�! P

0

P

0

� P

00

A ` P

`

�! P

00

(Stru
t)

(a) The (Res-1) rule is subje
t to x 62 fn(`). (b) The (Res-2) rule is subje
t to x 2

fn(v) � fn(y; o), if o is ?, " or n, and to x 2 fn(y; v) � fn(o) otherwise. (
) In the (In)

and (Repl) axioms there is a side 
ondition that f

v

=

p

gP is well-de�ned. In all rules with


on
lusion of the form A ` P

`

�! Q there is an impli
it side 
ondition fn(P ) � A.

Symmetri
 versions of (Par) and (Comm) are elided.

Figure 6: Box-� Labelled Transition Semanti
s
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Theorem 1 If fn(P ) � A then A ` P

�

�! Q i� P ! Q.

This give 
on�den
e that the labelled semanti
s 
arries enough information. The proof

is somewhat deli
ate; it is sket
hed in Appendix A and given in detail in [34℄.

Some auxiliary notation is useful. For a sequen
e of labels `

1

: : : `

k

we write

A ` P

1

`

1

�! : : :

`

k

�! P

k+1

to mean 9P

2

; : : : ; P

k

: 8i 2 1::k : A

i

` P

i

`

i

�! P

i+1

, where A

i

= A [

S

j21::i

fn(`

j

). If

` 6= � we write A ` P

^

`

=) P

0

for A ` P

�

�!

�

`

�!

�

�!

�

P

0

; if ` = � then A ` P

^

`

=) P

0

is de�ned as A ` P

�

�!

�

P

0

, whi
h we also write as A ` P =) P

0

.

3 Wrappers and Components in Box-�

This se
tion gives four example wrappers. The �rst wrapper, W

1

, en
apsulates a

single 
omponent, restri
ting its intera
tions with the outside world to 
ommuni
ations

obeying a 
ertain proto
ol. The se
ond, L, is similar, but also writes a log of all su
h


ommuni
ations. The third wrapper,W

2

, en
apsulates two 
omponents, allowing ea
h

to intera
t with the outside world in a limited way but also allowing information to


ow from the �rst to the se
ond (but not vi
e versa) along an unordered pipeline. The

fourth and most 
omplex wrapper, F , is similar to W

2

, but implements an ordered

pipeline between the 
omponents.

Wrappers are designed in the 
ontext of some �xed proto
ols for intera
tion between


omponents and their environment, intera
tion among 
omponents, and additional

intera
tion between the environment and the wrapper (for logging or 
ontrol). These

proto
ols 
an be designed so that wrappers 
an be nested, allowing a 
omplex se
urity

poli
y to be 
onstru
ted from o�-the-shelf wrappers. The example wrappers below all

assume rather simple �xed proto
ols. As a trivial example, one 
an 
ompose W

1

with

itself, with

(W

1

ÆW

1

) ( )

def

= W

1

(W

1

( ))

as its internal and external interfa
es 
oin
ide. For more interesting 
omposition, one

would have to generalise to arbitrary sets of 
hannels instead of in and out , and allow

n-ary wrappers.

3.1 W

1

: A Simple Unary Filtering Wrapper

To demonstrate the use of box-� we give the de�nition of a wrapper that restri
ts the

interfa
e for user programs. In most operating systems, programs installed and run

by a user enjoy the same a

ess rights as the user, so if the user is allowed to open

a so
ket and send data out on the network then so 
an any 
omponent. We idealize

this s
enario with the 
on�guration below { an idealized single-user OS in whi
h user

Ali
e is exe
uting a program P . Here the box around P stands for the user prote
tion

domain enfor
ed by the operating system.

ali
e[ P ℄ j

!

!

!:::in

ali
e

x::: j OS write on Ali
e's in port

! out

ali
e

x::: j OS read from Ali
e's out port

!net

ali
e

x::: OS read from Ali
e's net port

11



The OS provides three 
hannels in; out and net, to respe
tively allow the user's program

to read from and write to the terminal and to send data out on a network 
onne
tion.

The program P is exe
uting within a box and so intera
ts with the OS using the " tag

{ for example P = in

"

x:out

"

h

xx

i

re
eives a value from the terminal and then sends a

pair of 
opies of the value ba
k to the terminal.

To exe
ute some untrusted 
ode fragment Q, Ali
e may run the 
ode in parallel with

her other appli
ations, perhaps as ali
e[P j Q℄. But, this grants too mu
h privilege to

Q. In parti
ular, if Q = ! in

"

x:net

"

x then any terminal input may be redire
ted to the

net, or if Q = ! 


?

y:(net

"


 j 


?

y

�

then Q 
an eavesdrop on 
ommuni
ations on 
hannel


 between other parts of the system in P .

A wrapper is a box-� 
ontext whi
h 
an enfor
e �ne-grain 
ontrol on the behaviour

of Q. Our �rst example is the �ltering wrapper W

1

, whi
h prevents Q from a

essing

the network or from eavesdropping:

W

1

( )

def

= (� a)

�

a[ ℄

j ! in

"

x:in

a

x

j ! out

a

x:out

"

x

�

a

in out

The system be
omes ali
e[P j W

1

(Q)℄. The untrusted 
ode is pla
ed in a box with a

fresh name a, so a 62 fn(Q). In parallel with the box are two forwarders for in and out

messages. The �rst, ! in

"

x:in

a

x, is a repli
ated input re
eiving values from the OS and

sending them to a; the se
ond is dual. Only these two pro
esses 
an intera
t with a

due to the s
ope of the restri
tion, so even when put in parallel with other 
ode the

wrapper guarantees that Q will not be able to send on net.

We show a small redu
tion sequen
e where P = 0 and Q = in

"

x:net

"

x. Here B is

the forwarders ! in

"

x:in

a

x j ! out

a

x:out

"

x.

in

ali
e

y j ali
e[P j W

1

(Q) ℄

� in

ali
e

y j ali
e[ (� a)( a[ Q℄ j B)℄

! ali
e[ in

"

y j(� a)( a[ Q℄ j B)℄

� ali
e[ (� a)(in

"

y j a[ Q℄ j B)℄

! ali
e[ (� a)(in

a

y j a[ Q℄ j B)℄

! ali
e[ (� a)( a[ in

"

y jQ℄ j B)℄

! ali
e[ (� a)( a[ net

"

y ℄ j B)℄

! ali
e[ (� a)(net

a

y j a[ 0 ℄ j B)℄

At the �nal state the output from Q is prevented from leaving the ali
e box dire
tly

as B does not 
ontain a forwarder for net. It is prevented from intera
tion with any P

(although here P was empty) by the restri
tion on a.

3.2 L: A Logging Wrapper

Wrappers 
an be used for monitoring as well as �ltering; in operating systems auditing

untrusted 
omponents is an important part of most se
urity infrastru
tures. The L

wrapper extends W

1

to maintain a log of all 
ommuni
ations of a pro
ess, sending

12




opies on a 
hannel log to the environment, as follows:

L( )

def

= (� a)

�

a[ ℄

j ! in

"

y:(log

"

y j in

a

y)

j ! out

a

y:(log

"

y j out

"

y)

�

a

in out log

Note that L does not interfere with the operation of the 
omponent it en
apsulates;

the logging a
tivity is transparent.

3.3 W

2

: A Pipeline Wrapper

A pipeline wrapper allows a 
ontrolled 
ow of information between two 
omponents.

We give a binary wrapper W

2

that en
apsulates two pro
esses. In an exe
ution of

W

2

(Q

1

; Q

2

) the two wrapped pro
esses Q

i


an intera
t with the environment as before,

on 
hannels in

i

and out

i

. In addition, Q

1


an send messages to Q

2

on a 
hannel mid .

W

2

(

1

;

2

)

def

= (� a; b)

�

a[

1

℄ j b[

2

℄

j ! in

1

"

y:in

1

a

y

j ! in

2

"

y:in

2

b

y

j ! out

1

a

y:out

1

"

y

j ! out

2

b

y:out

2

"

y

j !mid

a

y:mid

b

y

�

a

mid

in

1

out

1

b

in

2

out

2

As before W

2

is a non-binding 
ontext { we assume, wherever we apply it to two

pro
esses Q

1

; Q

2

, that fa; bg \ fn(Q

1

; Q

2

) = ;. For an example of a blo
ked attempt

by the se
ond pro
ess to send a value to the �rst, suppose Q

2

= mid

"

v. We have

W

2

�

Q

1

;mid

"

v

�

= (� a; b)

�

a[Q

1

℄ j b[mid

"

v℄ j R

�

! (� a; b)

�

a[Q

1

℄ j b[0℄ j mid

b

v j R

�

where R is the parallel 
omposition of forwarders. The output mid

b

v in the �nal state


annot intera
t further { not with the environment, as b is restri
ted, and not with the

forwarder !mid

a

y:mid

b

y, as a 6= b.

3.4 F : An Ordered Pipeline Wrapper

There is a tension between the strength of 
ommuni
ation primitive supported by a

wrapper and the strength of the se
urity property it 
an guarantee. The previous

three examples provide only asyn
hronous unordered 
ommuni
ation between 
ompo-

nents, whi
h would be awkward to use in most real systems. At the other extreme,

syn
hronous 
ommuni
ation introdu
es 
ausal 
ows in both dire
tions (the 
ausal 
ow

property we state in Se
tion 4.5 would not hold in a syn
hronous 
al
ulus, so a more

deli
ate property would be required { perhaps stating that there are only data-less

a
ks from one 
omponent to another). There are two intermediate points: one 
an

provide asyn
hronous ordered 
ommuni
ation, as we do below, or use some form of

13



F(

1

;

2

) = (� a; b)

�

a[

1

℄ j b[

2

℄ j

(� bu� ; full)

�

(� front ; ba
k)

�

(
reate FIFO bu�er) bu�

?

h

front ba
k

i

j

(
onne
t from

a

to bu�er) ! from

a

(

v r

)

:(� r

0

)(front

?

h

v r

0

i

j r

0

?

:r

a

) j

(
onne
t bu�er to to

b

) ! ba
k

?

(

v r

)

:(� r

0

)(to

b

h

v r

0

i

j r

0

b

:r

?

)

�

j

(bu�er 
ode) ! bu�

?

(

front ba
k

)

:front

?

(

v r

)

:(r

?

j (� ba
k

0

)(bu�

?

h

front ba
k

0

i

j full

?

h

ba
k

0

ba
k v

i

)) j

! full

?

(

ba
k

0

ba
k v

)

:(� r)(ba
k

?

h

v r

i

j r

?

:ba
k

0

?

(

v

0

r

0

)

:(r

0

?

j full

?

h

ba
k

0

ba
k v

0

i

))

�

j

(I/O forwarders) ! in

1

"

x:in

1

a

x j ! out

1

a

x:out

1

"

x j

! in

2

"

x:in

2

b

x j ! out

2

b

x:out

2

b

x

�

in

1

out

1

in

2

out

2

(r

0

)

(r) to

a

from

FIFO bu�er

b

Figure 7: FIFO Pipeline Wrapper F .

weak a
knowledgments, as in the NRL pump [23℄. The former still guarantees an ab-

sen
e of information 
ow (albeit at the 
ost of maintaining an unbounded bu�er) while

the latter limits bandwidth of 
overt 
hannels. In both 
ases, it is essential to be able

to guarantee that the implementation of the 
ommuni
ation primitives does a
tually

have the desired 
ow property; this is what we set out to do here.

In Figure 7 we give a wrapper F that takes two 
omponents and allows the �rst

to 
ommuni
ate with the se
ond by a �rst-in, �rst-out bu�er. The wrapper has been

written with 
are to avoid any information leak from the se
ond 
omponent to the

�rst. For simpli
ity both 
omponents have simple unordered input and output ports

in

i

and out

i

to the environment; it would be routine to make these FIFO also.

The interfa
e to the wrapper is as follows. To write to the bu�er a produ
er sends a

value together with an a
knowledgment 
hannel to the wrapper (using a standard asyn-


hronous �-
al
ulus idiom). The wrapper inserts the value in a queue and a
knowledges

re
eption. For value v the produ
er may 
ontain

(� a
k)(from

"

h

v a
k

i

j a
k

"

:::);

sending the value and a new a
knowledgement 
hannel a
k to the wrapper and, in

parallel, waiting for a reply before pro
eeding with its 
omputation. On the re
eiver

14



side, we may have a pro
ess that waits for a pair of a value and an a
k 
hannel:

to

"

(

z r

)

:( r

"

j :::)

The name of the re
eiving 
hannel is to; 
hannel r is used to send the a
knowledgement

ba
k to the wrapper. Thus a 
on�guration where B stands for the body of the wrapper


ould be:

(� a; b)

�

a[ (� a
k)(from

"

h

v a
k

i

j a
k

"

:0) ℄ j

b[ to

"

(

z r

)

:r

"

℄ j

B

�

The implementation of the wrapper is somewhat tri
ky, as we have to be 
areful not

to introdu
e 
overt 
hannels between the 
omponents. Within the wrapper there is a

repli
ated input on bu� that 
reates a new empty FIFO bu�er and a repli
ated input

on full that 
reates a new bu�er 
ell 
ontaining a value. The key point is to ensure that

the a
knowledgment to the �rst 
omponent not be dependent on any a
tion performed

by the se
ond 
omponent. The glue pro
ess that 
onne
ts the from

a


hannel to the

bu�er has a subpro
ess, r

0

?

:r

a

, to send the a
k to a. This small pro
ess itself expe
ts

an a
k from the head of the bu�er saying that the message was inserted in the queue.

The bu�er 
ode front

?

(

v r

)

:(r

?

: : : a
ks on r immediately, in parallel with pla
ing the

new message in a full bu�er 
ell at the head of the queue. The asyn
hrony here is

essential.

4 Se
urity Properties

So far we have been vague about the statement of the properties that we expe
t wrap-

pers to enfor
e. ForW

1

it may be 
lear from examination of the 
ode and the semanti
s

that the wrapper is satisfa
tory, but it is un
lear exa
tly what properties are guaran-

teed. For F the situation is mu
h worse { even this simple wrapper is 
omplex enough

that a rigorous statement and proof of its se
urity properties is essential; the user

should not be required to examine the 
ode of a wrapper in order to understand the

se
urity that it provides. We now turn to the task of formalizing these properties and

developing the tools needed to prove them.

4.1 Purity

The most basi
 questions that one would expe
t a theory of wrappers to deal with

are whether a 
omponent is well-behaved and, for 
ertain wrappers, whether wrap-

ping an ill-behaved 
omponent 
reates a well-behaved 
omponent. Statements of su
h

properties must be with respe
t to a parti
ular 
hoi
e of proto
ol for legitimate wrap-

per/
omponent intera
tion. For example, for the unary wrappers W

1

and L a well-

behaved 
omponent is expe
ted to intera
t only on in and out 
hannels with its parent.

This 
an be easily formalised using our labelled transition semanti
s: we say an inter-

fa
e M is a set of pairs m of a (
o)name and a tag, e.g. M = fin

"

; out

"

g.

De�nition 1 A pro
ess P is well-behaved for an interfa
e M i� whenever A ` P

l

1

::l

k

�!

Q then for ea
h j 2 1::k we have l

j

= � or 9m 2M; v : l

j

= mv.

Re
alling the examples of Se
tion 3.1,

P = in

"

x:out

"

h

xx

i

Q = ! in

"

x:net

"

x
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P is well-behaved for interfa
e fin

"

; out

"

g (it has transitions only with labels of the

forms � , in

"

v or out

"

v) but Q is not.

Irrespe
tive of the behaviour of a 
omponentR, wrapperW

1

enfor
es good behavior,

thus W

1

(R) does obey the proto
ol { again this 
an be stated 
learly using the LTS:

Proposition 2 For any program R with a 62 fn(R), W

1

(R) is well-behaved for fin

"

;

out

"

g.

We say a unary wrapper with this property is pure. The proof is via an expli
it


hara
terisation of the states rea
hable by labelled transitions of W

1

(R); it 
an be

found in Appendix B.

The logging wrapper L is not pure in this sense, but a wrapped program L(R) 
an

again intera
t only in limited ways.

Proposition 3 For any program R with a 62 fn(R), L(R) is well-behaved for fin

"

,

out

"

, log

"

g.

For an analogous notion of purity for binary wrappers with interfa
es su
h as W

2

, say

a binary wrapper C is pure i� for any programs R

1

; R

2

, (satisfying the appropriate free

name 
ondition, i.e. that with fa; bg \ fn(R

1

; R

2

) = ;), C(R

1

; R

2

) is well-behaved for

fin

"

1

; out

1

"

; in

"

2

; out

2

"

g.

Proposition 4 Binary wrappers W

2

and F are pure.

Propositions 3 and 4 
an be proved either via expli
it 
hara
terisations similar to that

of Proposition 2 or using the type system developed later.

4.2 Honesty

The properties of wrappers stated in the previous subse
tion are weak as they hardly


onstrain the behaviour of the wrapper. For example, the useless unary wrapper

C( )

def

= 0

is trivially pure as it inhibits all intera
tions. In [34℄ we introdu
ed the 
lass of honest

wrappers that are guaranteed to forward legitimate messages. An initial attempt at a

de�nition of honesty might be to take W

1

as a spe
i�
ation, de�ning a unary wrapper

C to be honest i� for any program P the pro
esses C(P ) and W

1

(P ) are operationally

equivalent. This is unsatisfa
tory { it rules out wrappers su
h as L, and it does not give

a very 
lear statement of the properties that may be assumed of an honest wrapper.

A better attempt might be to say that a unary wrapper C is honest i� for any

well-behaved P the pro
esses C(P ) and P are operationally equivalent. This would be

unsatisfa
tory in two ways. Firstly, some intuitively sound wrappers have additional

intera
tions with the environment { e.g. the logging outputs of L { and so would

not be 
onsidered honest by this de�nition. More seriously, this de�nition would not


onstrain the behaviour of wrappers for non-well-behaved P at all { if a 
omponent P

attempted, in error, a single illi
it 
ommuni
ation then C(P ) might behave arbitrarily.

To address these points we gave an expli
it de�nition of honesty, in the style of

weak asyn
hronous bisimulation [3℄, for unary wrappers su
h as W

1

and L.
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De�nition 2 (Honesty) Consider a family of relations R indexed by �nite sets of

names su
h that ea
h R

A

is a relation over fP j fn(P ) � A g. Say R is an h-

bisimulation if, whenever C R

A

Q then:

1. if A ` C

`

�! C

0

for ` = out

"

v; � then A ` Q

^

`

=) Q

0

^ C

0

R

A[fn(`)

Q

0

2. if A ` C

in

"

v

�! C

0

then either A ` Q

in

"

v

=) Q

0

and C

0

R

A[fn(in;v)

Q

0

or A ` Q =) Q

0

and C

0

R

A[fn(in;v)

Q

0

j in

"

v

3. if A ` C

`

�! C

0

for any other label then C

0

R

A[fn(`)

Q

together with symmetri
 versions of 
lauses 1 and 2. Say a unary wrapper C is honest

if for any program P (satisfying the appropriate free name 
ondition) and any A �

fn(C(P )) there is an h-bisimulation R with C(P ) R

A

P .

Loosely, 
lauses 1, 2 and the symmetri
 versions ensure that legitimate 
ommuni-


ations and internal redu
tions must be weakly mat
hed. Clause 3 ensures that if the

wrapper performs some additional 
ommuni
ation then this does not a�e
t the state

as seen by the wrapped pro
ess.

Proposition 5 The unary wrapper W

1

is honest.

We 
onje
ture that L is also honest. We give some examples of dishonest wrappers.

Take

C( )

def

= (� a)a[ ℄

This is not honest { a transition A ` P

out

"

v

�! P

0


annot be mat
hed by C(P ), violating

the symmetri
 version of 
lause 1. Now 
onsider

C( )

def

=

This wrapper is also dishonest as C(P ) 
an perform a
tions not in the proto
ol that

essentially a�e
t the state of P . For example, take P = x

?

y:out

"

hi

. Suppose C(P ) R

A

P

for an h-bisimulation R. We have A ` C(P )

x

?

hi

�! out

"

hi

so by 
lause 3 out

"

hi

R

A

P , but

then 
lause 1 
annot hold { the left hand side 
an perform an out

"

hi

transition that


annot be mat
hed be the right hand side.

A de�nition of honesty for binary wrappers must take into a

ount the legitimate

intera
tions between the two 
omponents. In [34℄ we gave a tentative de�nition, in

terms of binary h-bisimulations, but it was rather 
omplex { dealing with the 
ombi-

nation of theW

2

proto
ol and the asyn
hrony of the 
al
ulus. We regard it as an open

problem to give satisfa
tory de�nitions of honesty for 
omplex wrappers and of an op-

erational equivalen
e �, 
on
luding this subse
tion with some desirable relationships

between them.

The proto
ol for 
ommuni
ation between a 
omponent and a unary wrapper is

designed so that wrappers may be nested. We 
onje
ture that the 
omposition of any

honest unary wrappers is honest.

Conje
ture 6 If C

1

and C

2

are honest unary wrappers then C

1

Æ C

2

is honest.
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Analogous results for non-unary wrappers would require wrappers with more 
omplex

interfa
es so that the input, output and mid 
hannels 
ould be 
onne
ted 
orre
tly.

A desirable property of a pure wrapper is that it should not a�e
t the behaviour of

any well-behaved 
omponent | one might expe
t for any pure and honest C and well-

behaved P that P � C(P ) for any reasonable operational equivalen
e �. Unfortunately

this does not hold for the obvious naive adaptation of weak asyn
hronous bisimulation

to box-�, even for W

1

, as the wrapper 
an make input transitions that 
annot be

mat
hed { a more re�ned equivalen
e is required.

A simpler property would be that multiple wrappings have no e�e
t. We would

expe
t that W

1

is idempotent, i.e. that W

1

(W

1

(P )) � W

1

(P ), for any reasonable

equivalen
e �.

4.3 Unidire
tional Information Flow: First Attempts

Honesty and Purity are desirable properties, but they do not address our 
entral prob-

lem: that of understanding in what sense a multi-hole wrapper su
h asW

2

or F allows

�ne-grain 
ontrol over the information 
ows between 
omponents { enfor
ing the uni-

dire
tional 
ow property that the se
ond wrapped 
omponent should not be able to

a�e
t the �rst. By examining the 
ode for W

2

it is intuitively 
lear that information


an not 
ow from Q to P within W

2

(P;Q). For F it is mu
h less obvious, however,

and when one 
omes to make the intuition pre
ise it be
omes far from 
lear exa
tly

what property is desired. Moreover, the user should not have to examine the wrapper


ode in order to get suÆ
ient guarantees about its behaviour.

In this subse
tion we de�ne two information 
ow properties expressed using the

LTS: new name dire
tionality and permutation. Neither is satisfa
tory; we argue that

a more intensional semanti
s is required. The following two subse
tions develop a


oloured labelled transition semanti
s and state a 
ausal 
ow property in terms of it.

Together, these de�nitions illustrate the wide range of pre
ise properties whi
h the

intuitive statement might be thought to mean. We hope to provoke dis
ussion of

exa
tly what guarantees should be desired by users and by 
omponent designers.

For simpli
ity, only pure binary wrappers C are 
onsidered.

New-name dire
tionality As we are using a 
al
ulus with 
reation of new names,

we 
an test a wrapper by supplying a new name to the se
ond 
omponent, on in

2

,

and observing whether it 
an ever be output by the �rst 
omponent on out

1

. Say C is

dire
tional for new names if whenever

A ` C(P

1

; P

2

)

`

1

�! : : :

`

j

�!

in

2

"

u

�!

`

0

1

�! : : :

`

0

k

�!

out

1

"

u

0

�! P

with x 2 fn(u), but x is new, i.e. x 62 A [ fn(`

1

: : : `

j

), and x is not subsequently input

to the �rst 
omponent, i.e.

x 62

[

i21::k^`

0

i

=in

1

"

v

fn(v)

then x is not output by the �rst 
omponent, i.e. x 62 fn(u

0

). This property does not

prevent all information 
ow, however { a variant of W

2


ontaining a reverse-forwarder

that only forwards parti
ular values, su
h as

!mid

a

2

y:if y 2 f0; 1g then mid

a

1

y


ould still satisfy it. (Here 0 and 1 are free names, whi
h must therefore be in A.)

18



Permutation Our se
ond property formalises the intuition that if no observable be-

haviour due to P

1

depends on the behaviour of P

2

then in any tra
e it should be

possible to move the a
tions asso
iated with P

1

before all a
tions asso
iated with P

2

.

Say C has the permutation property if whenever

A ` C(P

1

; P

2

)

`

1

=) : : :

`

k

=) P

with `

i

6= � there exists a permutation � of f1; : : : ; kg su
h that

A ` C(P

1

; P

2

)

`

�(1)

=) : : :

`

�(k)

=) P

and no in

1

or out

1

transition o

urs after any in

2

or out

2

transition in `

�(1)

: : : `

�(k)

.

Permutation ensures that a
tions of P

1

do not depend on inputs of P

2

but it does not

prevent initial intera
tions between the 
omponents.

For an example wrapper without this property, 
onsider a wrapper C whi
h for
es

inputs of P

1

to be 
ausally dependent on inputs of P

2

.

C(

1

;

2

)

def

= (� a

1

; a

2

)

�

a

1

[

1

℄ j a

2

[

2

℄

j ! in

2

"

y:

�

in

2

a

2

y j ! in

1

"

y:in

1

a

1

y

�

j ! out

1

a

1

y:out

1

"

y

j ! out

2

a

2

y:out

2

"

y

j !mid

a

1

y:mid

a

2

y

�

Here the in

1

messages are not forwarded until at least one in

2

input is re
eived from

the environment. Nonetheless, in some sense there is still no information 
ow from the

se
ond 
omponent to the �rst.

The new-name dire
tionality and permutation properties are expressed purely in

terms of the externally observable behaviour of C(P;Q) (in fa
t, they are properties of

its tra
e set, a very extensional semanti
s). Note, however, that the intuitive statement

that information does not 
ow from Q to P depends on an understanding of the inter-

nal 
omputation of P and Q that is not present in the redu
tion or labelled transition

relations (given only that C(P;Q) !

�

R there is no way to asso
iate subterms of R

with an `origin' in C, P or Q). We therefore develop a more intensional semanti
s in

whi
h output and input pro
esses are tagged with sets of 
olours. The semanti
s prop-

agates 
olours in intera
tion steps, thereby tra
king the 
ausal dependen
ies between

intera
tions.

4.4 Colouring the Box-� Cal
ulus

We introdu
e two semanti
s for 
apturing the intuitive property that one wrapped


omponent does not 
ausally a�e
t another. First, we de�ne a simple 
oloured redu
tion

semanti
s for box-� whi
h annotates output pro
esses with sets of 
olours that re
ord

their 
ausal histories { essentially the sets of prin
ipals that have a�e
ted them in the

past { and the redu
tion semanti
s propagate this 
ausal history data. Se
ondly, we

introdu
e a 
oloured labelled transition semanti
s, allowing more dire
t statements of

se
urity properties of wrappers that intera
t with their environment. The 
oloured


al
ulus is a trade-o� { it 
aptures less detailed 
ausality information than the non-

interleaving models studied in 
on
urren
y theory [45, 5, 9℄ but is mu
h simpler; it


aptures enough information to express interesting se
urity properties.
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The 
oloured syntax. We take a set 
ol of 
olours or prin
ipals (we use the terms

inter
hangeably) disjoint from N . Let k; p; q range over elements of 
ol and C;D;K

range over subsets of 
ol. We de�ne a 
oloured box-� 
al
ulus by annotating all outputs

with sets of 
olours:

P ::= C :x

o

v

�

�

x

�

p:P

�

�

!x

�

p:P

�

�

n[P ℄

�

�

0

�

�

P j P

0

�

�

(� x)P

If P is a 
oloured term we write jP j for the term of the original syntax obtained by

erasing all annotations. Conversely, for a term P of the original syntax C ÆP denotes

the term with every parti
le 
oloured by C. For a 
oloured P we write C �P for the


oloured term whi
h is as P but with C unioned to every set of 
olours o

urring in it.

We sometimes 
onfuse p and the set fpg. Let pn(P ) be the set of 
olours that o

ur

in P . We write CD for the union C [ D.

In the 
oloured output C : x

o

v think of C as re
ording the 
ausal history of the

output parti
le { C is the set (possibly empty) of prin
ipals p 2 C that have a�e
ted

the parti
le in the past. In an initial state all outputs might typi
ally be 
oloured by

singleton sets giving their a
tual prin
ipals, for example 
olouring the 
ode of wrapper

F and two wrapped 
omponents with di�erent 
olours w; p; q:

(w ÆF) (p ÆP j q ÆQ)

The 
oloured redu
tion semanti
s is obtained by repla
ing the �rst four axioms

of the un
oloured semanti
s by the rules

n[C :x

"

v j Q℄ �! C :x

n

v j n[Q℄ (C Red Up)

C :x

n

v j n[Q℄ �! n[C :x

"

v j Q℄ (C Red Down)

C :x

�

v j x

�

p:P �! C �(f

v

=

p

gP ) (C Red Comm)

C :x

�

v j !x

�

p:P �! !x

�

p:P j C �(f

v

=

p

gP ) (C Red Repl)

that propagate 
olour sets. The 
oloured 
al
ulus has essentially the same redu
tion

behaviour as the original 
al
ulus:

Proposition 7 For any 
oloured P we have jP j ! Q i� 9P

0

: P �! P

0

^ jP

0

j = Q.

The proof is by straightforward indu
tion on the derivation of transitions.

The 
oloured labelled transitions have labels ` exa
tly as before. The 
oloured

labelled transition relation has the form

A ` P

`

�!

C

Q

where A is a �nite set of names and fn(P ) � A; it should be read as `in a state where

the names A may be known to P and its environment, pro
ess P 
an do `, 
oloured

C, to be
ome Q'. Again C re
ords 
ausal history, giving all the prin
ipals whi
h have

dire
tly or indire
tly 
ontributed to this a
tion. The relation is de�ned as the smallest

relation satisfying the rules in Figure 8. It 
oin
ides with the previous LTS and with

the 
oloured redu
tion semanti
s in the following senses.

Proposition 8 For any 
oloured P we have A ` jP j

`

�! Q i� 9C; P

0

: A ` P

`

�!

C

P

0

^ jP

0

j = Q.
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A ` C :x

o

v

x

o

v

�!

C

0

(Out)

A ` x

�

p:P

x

�

v

�!

C

C �f

v

=

p

gP

(
) (In)

A ` P

`

�!

C

P

0

A ` P j Q

`

�!

C

P

0

j Q

(Par)

A ` !x

�

p:P

x

�

v

�!

C

!x

�

p:P j C �f

v

=

p

gP

(
) (Repl)

A ` P

x




v

�!

C

P

0

A ` Q

x




v

�!

C

Q

0

A ` P j Q

�

�!

;

(� fn(x; v) �A)(P

0

j Q

0

)

(Comm)

A ` P

x

"

v

�!

C

P

0

A ` n[P ℄

�

�!

;

(� fn(x; v) �A)(C :x

n

v j n[P

0

℄)

(Box-1)

A ` n[P ℄

x

n

v

�!

C

n[C :x

"

v j P ℄

(Box-2)

A ` P

�

�!

C

P

0

A ` n[P ℄

�

�!

C

n[P

0

℄

(Box-3)

A; x ` P

`

�!

C

P

0

A ` (� x)P

`

�!

C

(� x)P

0

(a) (Res-1)

A; x ` P

y

o

v

�!

C

P

0

A ` (� x)P

y

o

v

�!

C

P

0

(b) (Res-2)

A ` P

`

�!

C

P

0

P

0

� P

00

A ` P

`

�!

C

P

00

(Stru
t)

(a) The (Res-1) rule is subje
t to x 62 fn(`). (b) The (Res-2) rule is subje
t to x 2

fn(v) � fn(y; o), if o is ?, " or n, and to x 2 fn(y; v) � fn(o) otherwise. (
) In the (In)

and (Repl) axioms there is a side 
ondition that f

v

=

p

gP is well-de�ned. In all rules with


on
lusion of the form A ` P

`

�!

C

Q there is an impli
it side 
ondition fn(P ) � A.

Symmetri
 versions of (Par) and (Comm) are elided.

Figure 8: Coloured Box-� Labelled Transition Semanti
s
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The proof is by straightforward indu
tion on the derivation of labelled transitions.

Proposition 9 For 
oloured P and Q, if fn(P ) � A then A ` P

�

�!

;

Q i� P ! Q.

The proof is a minor adaptation of that of Theorem 1.

4.5 Unidire
tional Flow: The Causal Flow Property

A more 
onvin
ing property 
an now be stated. Say an instantiation of some binary

wrapperW is an un
oloured pro
essW(P;Q) where P and Q are un
oloured pro
esses

not 
ontaining the new-bound names s
oping the holes of W . As before, say W is a

pure binary wrapper if for any instantiation and any transition sequen
e

A ` W(P;Q)

`

1

�! : : :

`

k

�! R

the labels `

j

have the form � , in

i

"

v, or out

i

"

v, for i 2 f1; 2g. (purity simply means

that the wrapper has a �xed interfa
e and thus simpli�es the statement of the 
ausal


ow property).

De�nition 3 (Causal 
ow property) A pure binary wrapper W has the 
ausal 
ow

property if for any instantiation W(P;Q) and any 
oloured tra
e

A ` ; ÆW(P;Q)

`

1

�!

C

1

: : :

`

k

�!

C

k

;

su
h that all input transitions in

1

"

v and in

2

"

v in `

1

::`

k

are 
oloured with prin
ipal sets

fpg and fqg respe
tively, we have `

j

= out

1

"

v implies that q 62 C

j

.

This property forbids any 
ausal 
ow from an input on in

2

to an output on out

1

.

Di�erent variants of the 
ow property, with di�erent 
hara
teristi
s, 
an also be

stated. For example, to prevent information in the initial state of Q a�e
ting outputs

on out

1

we 
ould 
onsider 
oloured tra
es

A `

�

; ÆW)(p ÆP; q ÆQ)

`

1

�!

C

1

: : :

`

k

�!

C

k

This still allows the Q to 
ommuni
ate with P but only on the 
ondition that P does

not perform any further output dependent on the 
ommuni
ated values. Forbidding

Q a�e
ting P at all (even if there are no inputs or outputs of either 
omponent) 
an

be done with a slightly more intri
ate 
oloured semanti
s. There is no 
lear 
ut `best'

solution, yet the use of 
ausal semanti
s allows su

in
t statement of the alternatives

and eases the 
omparison of these di�erent properties.

5 Causality Types

Verifying a 
ausal 
ow property dire
tly 
an be laborious, requiring a 
hara
terisa-

tion of the state spa
e of a wrapper 
ontaining arbitrary 
omponents. We therefore

introdu
e a type system that stati
ally 
aptures 
ausal 
ows; a wrapper 
an be shown

to satisfy the 
ausal 
ow property simply by 
he
king that it is well-typed. Often

(though not always) one might start with un
oloured terms; 
olours are propagated

into the terms duing labelled transitions. The type system 
aptures invariants about
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how 
olours 
an propagate { the 
ausal 
ow property is a 
orollary of the subje
t re-

du
tion theorem for the type system. This se
tion introdu
es the type system, gives

its soundness theorems, and applies it to F .

A simple type system for Box-� would have types

T ::= 
han T

�

�

box

�

�

hT :: T i

for the types of 
hannel names 
arrying T , box names, and tuples. We annotate the

�rst two by sets K of prin
ipals and add a type name, of arbitrary names, and >, of

arbitrary values, giving the value types

T ::= 
han

K

T

�

�

box

K

�

�

hT :: T i

�

�

name

�

�

>

If x : 
han

K

T then x is the name of a 
hannel 
arrying T ; moreover, in an output

pro
ess C : x

?

v on x the typing rules will require C � K { intuitively, su
h an output

may have been 
ausally a�e
ted only by the prin
ipals k 2 K. In an input x

�

p:P on

x the 
ontinuation P must therefore be allowed to be a�e
ted by any k 2 K, so any

output within P must be on a 
hannel of type 
han

K

0

T with K � K

0

.

We are 
on
erned with the en
apsulation of possibly badly-typed 
omponents, so

must allow a box a[P ℄ in a well-typed term to 
ontain an untyped pro
ess P . The type

system 
annot be sensitive to the 
ausal 
ows within su
h a box; it 
an only enfor
e

an upper bound on the set of prin
ipals that 
an a�e
t any part of the 
ontents. If

a :box

K

then a is a box name; the 
ontents may have been 
ausally a�e
ted only by

k 2 K.

We take type environments � to be �nite partial fun
tions from names to value

types. The type system has two main judgments, � ` v :T for values and � ` P :pro


K

for pro
esses. The typing for pro
esses re
ords just enough information to determine

when pre�xing a pro
ess with an input is legitimate { if P :pro


K

then P 
an be

pre�xed by an input on a 
hannel x : 
han

K

0

hi, to give x

?

:P , i� K

0

� K. Note, however,

that a P :pro


K

may have been a�e
ted by (and so synta
ti
ally 
ontain) k 62 K.

To type intera
tions between well-typed wrapper 
ode and a badly-typed boxed


omponent some simple subtyping is useful. We take the subtype order T � T

0

as

below, and write

V

fT

i

j i 2 1::k g for the greatest lower bound of T

1

; ::; T

k

, where this

exists.

>

name

hT

1

:: T

k

i

box

K


han

K

T

The 
omplete type system is given in Figure 9. It uses judgements ` p :T B �, meaning

pattern p mat
hes values of type T and gives bindings �; � ` v :T , meaning value v

has type T in environment �; and � ` P :pro


K

, meaning pro
ess P is well-formed

in environment � and 
an be pre�xed by anything that a�e
ts at most K. We now

explain the key aspe
ts by giving some admissible typing rules.

Basi
 Flow Typing Consider the type environment x : 
han

K

hi; y : 
han

L

hi and the

redu
tion

C :x

?

j x

?

:D :y

?

! (C [ D) :y

?
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During the redu
tion the output y

?

on y is 
ausally a�e
ted by the output on x { the

right-hand pro
ess term (C [ D) :y

?

re
ords that the output on y has been (indire
tly)

a�e
ted by all the prin
ipals that had a�e
ted the output on x. For the left pro
ess

to be well-typed we must 
learly require C � K and D � L; for the right pro
ess to be

well-typed we need also C � K, to guarantee this the typing rules require K � L. The

relevant admissible rules are below.

� ` x : 
han

K

T

� ` v :T

C � K

� ` C :x

?

v : pro


K

� ` x : 
han

K

T

�; y :T ` P :pro


K

00

K � K

00

� ` x

?

y:P :pro


K

Now 
onsider also y : 
han

L

0

hi and the pro
ess

C :x

?

j x

?

:

�

D :y

?

j D

0

:y

0

?

�

Here both the output on y and that on y

0

must be a�e
table by C, so the typing rule

for parallel must take the interse
tion of allowed-
ause sets:

� ` P :pro


K

� ` Q :pro


K

0

� ` P j Q :pro


K\K

0

The examples above involve only 
ommuni
ation within a wrapper, with tag ?. Com-

muni
ation between a wrapper and its parent, with tag ", has the same typing rules,

as the parent is presumed well-typed.

Channel Passing Channel passing involves no additional 
ompli
ation. Consider the

type environment � = z : 
han

K

00

hi, x : 
han

K


han

K

00

hi, and the redu
tion

C :x

?

z j x

?

y:D :y

?

! (C [ D) :z

?

The left-hand pro
ess is typable using the rules above if C � K for the x output, D � K

00

for the y output, and K � K

00

for the input, using �; y : 
han

K

00

hi ` D : y

?

:pro


K

00

.

Together these imply (C [ D) � K

00

, so the right-hand pro
ess is well-typed.

Intera
ting with a box (at >) As dis
ussed above, the 
ontents of a box may be

badly-typed, yet a wrapper must still be able to intera
t with them. The simplest 
ase

is that in whi
h a wrapper sends and re
eives values that it 
onsiders to be of type

>; we 
onsider more general 
ommuni
ation in the next paragraph. The typing rule

for boxes requires only that the prin
ipals pn(P ) synta
ti
ally o

urring within the


ontents P of a box are 
ontained in the permitted set and that P 's free names are all

de
lared in the type environment.

� ` a :box

K

pn(P ) � K

fn(P ) � dom(�)

� ` a[P ℄ :pro


K

Consider sending to and re
eiving from a box a :box

K

.

C :x

a

v j a[P ℄ j z

a

y:Q
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For the output to be well-typed we must insist only that C � K; for the input to be

well-typed Q must be allowed to be a�e
ted by any prin
ipal that might have a�e
ted

the 
ontents P .

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

a

v : pro


K

� ` a :box

K

� ` x : 
han

K

0

>

�; y :> ` P :pro


K

00

K � K

0

� K

00

� ` x

a

p:P :pro


K

0

Intera
ting with a box (at any transmissible S) More generally, a wrapper may

re
eive from a box tuples 
ontaining names whi
h are to be used for 
ommuni
ating

with the box as 
hannel names, for example

x

a

(

v r

)

:

�

C :r

a

j : : :

�

re
eives a value v and name r from box a and uses r to send an a
k ba
k into a. This

ne
essarily involves some run-time type
he
king, as the box may send a tuple instead

of a name for r. There is a design 
hoi
e here: how strong should this type
he
king

be? Requiring an implementation to maintain a run-time re
ord of the types of all

names would be 
ostly, so we 
he
k only the stru
ture of values re
eived from boxes.

We suppose the run-time representations of values allow names (bit-patterns of some

�xed length) and tuples to be distinguished, and the number of items in a tuple to be

determined, but no more (so e.g. x : 
han

K

T and y :box

L

will both be represented as

bit patterns of the same length). We introdu
e the supertype name of 
han

K

T and

box

L

, and allow a wrapper to re
eive only values of the transmissible types

S ::= > j name j hS :: Si

To send a value to a box by C :x

a

v it is ne
essary only for x to be of type name.

The operational semanti
s expresses this run-time type
he
king by means of the


ondition that f

v

=

p

gP is well-de�ned in the redu
tion 
ommuni
ation rule and the

labelled-transition input rules { for example, f

h

z z

i

=

x

gC :x

?

is not well-de�ned, as the

syntax does not allow a tuple to o

ur in 
hannel-name position of an output. We

would like to ensure that run-time type
he
king is only required when re
eiving values

from a box, i.e. that for 
ommuni
ation within a wrapper or between a wrapper and

its parent su
h a substitution is always well-de�ned. This is guaranteed by requiring

a box input pre�x to immediately test all parts of a re
eived value that are assumed

of type name { in typing an input x

a

p:P the type environment � derived from the

pattern p must 
ontain no tuples, and all x :name in � must be used within P as a


hannel or box. For example, if a :box

K

and x : 
han

K

hnamenamei then

x

a

(

y z

)

:

�

K :y

a

j K :z

a

�

is well-typed as the pattern

(

y z

)


ompletely de
omposes values of type hnamenamei

and both y and z are used as 
hannels in K :y

a

j K :z

a

. On the other hand

x

a

w:x

?

w

is not, as it may re
eive (for example) a triple from the box, leading to a later run-

time error within the wrapper. The type system is 
onservative in also ex
luding
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Patterns:

` :T B ; ` x : T B x : T

` p

1

:T

1

B �

1

:: ` p

k

:T

k

B �

k

`

(

p

1

:: p

k

)

: hT

1

:: T

k

i B �

1

; ::;�

k

Values:

�; x :T ` x :T

� ` v

1

:T

1

:: � ` v

k

:T

k

� `

h

v

1

:: v

k

i

:hT

1

:: T

k

i

fn(v) � dom(�)

� ` v :>

T atomi


�; x :T ` x :name

Pro
esses:

o 2 f?; "; "g

� ` x : 
han

K

T

� ` v :T

C � K

� ` C :x

o

v : pro


K

(Out-?; "; ")

� 2 f?; "g

� ` x : 
han

K

T

` p :T B �

�;� ` P :pro


K

� ` x

�

p:P :pro


K

(In-?; ")

o 2 fa; ag

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

o

v : pro


K

(Out-a; a)

� ` a :box

K

0

� ` x : 
han

K

S

` p :S B �

�;� ` P :pro


K

K

0

� K

� 
at

P tests all names of type name in �

p 
ontains no wild
ards

� ` x

a

p:P :pro


K

(In-a)

� ` P :pro


K

� ` Q :pro


K

0

� ` P j Q :pro


K\K

0

(Par)

� ` n :box

K

pn(P ) � K

fn(P ) � dom(�)

� ` n[P ℄ :pro


K

(Box)

� ` 0 :pro


K

(Nil)

�; x :T ` P :pro


K

T atomi


� ` (� x)P :pro


K

(Res)

� ` P :pro


K

0

K � K

0

� ` P :pro


K

(Spe
)

The repli
ated input rules are similar to the input rules. The predi
ate

`P tests all names of type name in �' is de�ned to be true i� for all y :name

in �, y o

urs free in 
hannel or box position within P .

Figure 9: Coloured Box-� Typing
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x

a

(

y z

)

:

�

K :y

a

�

. Say a type is atomi
 if it is of the form name, 
han

K

T or box

K

and


at if it is of the form >, name, 
han

K

T , or box

K

. Say � is atomi
 or 
at if all

types in ran(�) are. The atomi
 types are those whi
h 
an be dynami
ally extended

using restri
tion. We 
onsider dynami
s (redu
tions and labelled transitions) only

for pro
esses with respe
t to atomi
 typing 
ontexts; the de�nitions ensure that an

extruded name 
an always be taken to be of an atomi
 type. The 
al
ulus has no basi


data types, e.g. a type of integers, that are not dynami
ally extensible. This makes

the type system a little degenerate.

Nil and Restri
tion The typing rules for nil and restri
tion are straightforward;

there is also a spe
ialisation rule allowing some permitted a�e
tees of a pro
ess to be

forgotten.

� ` 0 :pro


K

�; x :T ` P :pro


K

T atomi


� ` (� x)P :pro


K

� ` P :pro


K

0

K � K

0

� ` P :pro


K

5.1 Soundness

We wish to infer properties of the 
oloured input/output behaviour of wrappers from

the soundness of the type system, and therefore need a subje
t redu
tion result whi
h

refers not only to redu
tions (equivalently, � transitions) but also to input/output

transitions. De�ne typed labelled transitions by

� `

K

P

`

�!

C

Q i�

�

� atomi
 ^ � ` P :pro


K

^ dom(�) ` P

`

�!

C

Q

�

The subje
t redu
tion theorem for ` an output x

o

v should state that x, o, v and Q

have suitable types; the theorem for ` an input should state that if ` 
an be typed then

Q 
an. The result is 
ompli
ated by the fa
t that box-� is a 
al
ulus with new name

generation, so new names 
an be extruded and intruded. Type environments for these

names are 
al
ulated as follows. For a type environment �, with � atomi
, and a value

v extruded at type T de�ne the type environment t
(�; v; T ) for new names in v as

follows.

t
(�; x; T ) = x :T if x 62 dom(�)

and T atomi


t
(�; x;>) = x :name if x 62 dom(�)

t
(�; x; T ) = ; if � ` x :T

t
(�;

h

v

1

:: v

k

i

;>) =

V

1::n

t
(�; v

i

;>)

t
(�;

h

v

1

:: v

k

i

; hT

1

:: T

k

i) =

V

1::n

t
(�; v

i

; T

i

)

t
(�; v; T ) unde�ned elsewhere

Here

V

i21::k

�

i

is the type environment that maps ea
h x in some dom(�

i

) to

V

fT j 9i :

x :T 2 �

i

g, where all of these are de�ned.

V

i21::k

�

i

is unde�ned otherwise. Note that

in the > 
ase the t
(�; v

i

;>) will ne
essarily all be well-de�ned and will be 
onsistent.

To see the need for

V

, 
onsider � = 
 : 
han

K

hbox

K

namei and P = (� x)


?

h

xx

i

. P

has an extrusion transition with value

h

xx

i

; the type 
ontext t
(�;

h

xx

i

; hbox

K

namei)

should be well-de�ned and equal to x :box

K

.

Further, the type system involves subtyping, so t
(�; v; T ) 
an only be used as a

bound on the extruded/intruded type environments. Say � � �

0

i� dom(�) = dom(�

0

)

and 8x 2 dom(�) : �(x) � �

0

(x).
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We 
an now state the subje
t redu
tion result. For output tags f?; "g and " the

name x is guaranteed to have a 
hannel type and v the type 
arried; for a and a

they are only guaranteed to be a name and a value of type >. f?; "g and a are


ommuni
ation tags, so x 
annot be extruded, whereas " and a are movement tags, so

x may be extruded. By 
onvention we elide a 
onjun
t that t
(:::) is de�ned wherever

it is mentioned.

Theorem 10 (Subje
t Redu
tion) If � `

K

P

x

o

v

�!

C

Q then


ase o 2 f?; "g: for some K

0

; T we have C � K

0

, � ` x : 
han

K

0

T , and there exists

� � t
(�; v; T ) su
h that �;� ` Q :pro


K

.


ase o =": for some K

0

; T we have C � K

0

and there exists � � t
(�;

h

x v

i

; h
han

K

0

T T i)

su
h that �;� ` Q :pro


K

.


ase o = a: for some K

0

we have C � K

0

, � ` a :box

K

0

, and there exists a type envi-

ronment � � t
(�;

h

x v

i

; hname; >i) su
h that �;� ` Q :pro


K

.


ase o = a: for some K

0

we have C � K

0

, � ` a :box

K

0

, � ` x :name, and there exists

� � t
(�; v;>) su
h that �;� ` Q :pro


K

.

If � `

K

P

x




v

�!

C

Q then


ase 
 2 f?; "g: for some K

0

, T we have � ` x : 
han

K

0

T . If moreover C � K

0

and

� � t
(�; v; T ) then �;� ` Q :pro


K

.


ase 
 = a: for some K

0

� K

00

, and S we have � ` a :box

K

0

, � ` x : 
han

K

00

S,

t
(�; v; S) well-de�ned, and ran(t
(�; v; S)) � fnameg. If moreover C � K

00

and � � t
(�; v; S) then �;� ` Q :pro


K

.


ase 
 = a: for some K

0

we have � ` a :box

K

0

. If moreover C � K

0

and we have

� � t
(�;

h

x v

i

; hname>i) then �;� ` Q :pro


K

.

If � `

K

P

�

�!

C

Q then C = ; and � ` Q :pro


K

.

A run-time error for box-� is a pro
ess in whi
h a potential 
ommuni
ation fails

be
ause the asso
iated substitution is not de�ned. More pre
isely, P 
ontains a run-

time error if it 
ontains subterms x




v and x




p:P in parallel (and not under an input

pre�x) and f

v

=

p

gP is not de�ned. In a well-typed pro
ess run-time errors 
an only

o

ur within boxes (whose 
ontents are untyped) or at 
ommuni
ations from a box

to the wrapper. Internal transitions of the wrapper and 
ommuni
ations between the

wrapper and its parent therefore do not require dynami
 type
he
king.

Theorem 11 (Limited Runtime Errors)

If � ` P :pro


K

, P � (� x

1

:: x

n

)

�

x




v j x




p:P

0

j Q

�

, � atomi
, P

0

does not 
ontain a

box and 
 2 f?; "g then f

v

=

p

gP is well-de�ned. Similarly for repli
ated input.

5.2 Typing the Ordered Pipeline Wrapper

Finally, we 
an show that instantiations of F are well-typed and use the subje
t re-

du
tion theorem to 
on
lude that F has the 
ausal 
ow property.
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Theorem 12 (F typing) If

� = �

1

; in

1

: 
han

fpg

>; out

1

: 
han

fpg

>; from : 
han

fpg

h>namei;

in

2

: 
han

fqg

>; out

2

: 
han

fp;qg

>; to : 
han

fp;qg

h> 
han

fp;qg

hii

and also fn(P;Q) � dom(�)� fa; bg

then � ` ; ÆF(P;Q) :pro


p

.

The proof of this involves type assumptions for the new-bound names of F as follows.

a:box

fpg

b:box

fp;qg

bu� :
han

fpg

h 
han

fpg

h> 
han

fpg

hi

i


han

fp;qg

h> 
han

fp;qg

hi

ii

full :
han

fp;qg

h
han

fp;qg

h> 
han

fp;qg

hi

i


han

fp;qg

h> 
han

fp;qg

hi

i

>i

A straightforward indu
tion on tra
e lengths using the Subje
t Redu
tion theorem then

proves the desired 
ausal 
ow result:

Theorem 13 Wrapper F has the 
ausal 
ow property.

6 Dis
ussion

Poli
y enfor
ement me
hanisms: Wrappers impose se
urity poli
ies on 
ompo-

nents for whi
h it is impra
ti
al to analyze the internal stru
ture, e.g. where only

untyped obje
t 
ode is available.

Several alternative approa
hes are possible, di�ering in the level of trust required,

the 
exibility of the se
urity poli
y enfor
ed, and their 
osts to 
omponent produ
ers

and users. Code signing and Java-style sandboxing have low 
ost but 
annot enfor
e


exible poli
ies { signed 
omponents may behave in arbitrary ways whereas sandboxed


omponents should not be able to intera
t with ea
h other at all. Code signing requires

the user to have total trust in the 
omponent produ
ers { not just in their intent, but

also in their ability to produ
e bug-free 
omponents. Sandboxing requires no trust,

but the la
k of any intera
tion is often too restri
tive. More deli
ate poli
ies 
an

be enfor
ed by shipping 
ode together with data allowing the user to type-
he
k it

in a se
urity-sensitive type system [43, 17℄, or to 
he
k a proof of a se
urity-relevant

behavioural property [27℄. In the long term these seem likely to be the best approa
hes,

but they require 
omponent produ
ers to invest e�ort and to 
onform to a 
ommon

standard for types or proofs { in the short term this is prohibitive. Shifting the burden

of proof to the user, by performing type inferen
e or stati
 analysis of downloaded 
ode,

seems impra
ti
al given only the obje
t 
ode, whi
h may not have been written with

se
urity in mind and so may not 
onform to any reasonable type system. In 
ontrast,

wrappers have been shown to have low-
ost { none to the produ
er and only a small

run-time 
ost to the user [12℄. They allow more 
exible intera
tion than sandboxing,

albeit 
oarser-grain poli
ies than proof-
arrying 
omponents or se
urity-type-
he
ked


omponents.
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Information 
ow properties: The 
ausal 
ow property is related to the property,

studied in many 
ontexts, that there is no information 
ow from a high to a low se
urity

level (though most work addresses 
omponents, whi
h may have the property, rather

than wrappers, whi
h may enfor
e it on sub
omponents). The literature 
ontains a

range of de�nitions that aim to 
apture this intuition in some parti
ular setting; the

formalisations vary widely. A basi
 
hoi
e is whether the property is stated purely

extensionally, in terms of a semanti
s that des
ribes only the input/output behaviour

of a system, or using a more intensional semanti
s. A line of work on Non-Interferen
e,

summarised in [25℄, takes an extensional approa
h, stating properties in terms of the

tra
es of input and output events of a system. Related de�nitions, adapted to a pro-

gramming language setting, are used in [43, 17℄. In the presen
e of nondeterminism,

however, non-interferen
e be
omes problemati
 { as dis
ussed in [42℄, the property may

only be meaningful given probabilisti
 s
heduling, whi
h has a high run-time 
ost.

We believe that the basi
 diÆ
ultly is that the intuitive property is an intensional

one { the notion of one 
omponent a�e
ting another depends on some understanding

of how 
omponents intera
t; a pre
ise statement requires a semanti
s that 
aptures

some aspe
ts of internal exe
ution, not just input/output behaviours. This might be

denotational or operational. Intensional denotational semanti
s have been used in the

proofs (and, in the last, statements) of non-interferen
e properties in [17, 1, 31℄, whi
h

use a logi
al relations proof and PER-based models. [42℄ and [31℄ go on to 
onsider

probabilisti
 properties.

For wrappers, it is important that the end-user be able to understand the se
urity

that they provide as 
learly as possible. We therefore wish to use as lightweight a

semanti
s as possible, as this must be understood before any se
urity property stated

using it, and so adopt an annotated operational semanti
s (developing a satisfa
tory

denotational semanti
s of box-�, dealing with name 
reation, boxes, and untyped 
om-

ponents, would be a 
hallenging resear
h problem in its own right). In a sequential

setting annotated operational semanti
s have been used by [46℄; see also [24℄. The

de�nition of the 
oloured semanti
s for box-� seems unproblemati
, but in general one

might validate an annotated semanti
s by relating it to a lower-level exe
ution model

(as mentioned below).

Negle
ting boxing and wrappers for the moment, 
onsidering simply �-pro
esses,

we believe that intensional properties stated in terms of 
ausal 
ow will generally imply

properties stated purely in terms of tra
e-sets. As a starting point, we show that our

type system implies a non-interferen
e property (similar to the permutation property

of [35℄, but for pro
esses rather than wrappers) in a parti
ular 
ase. We prove that

an output on a `low' 
hannel 
an always be permuted before an input on a `higher'


hannel (with respe
t to the latti
e of sets of 
olours).

Proposition 14 If L ( H and fh : 
han

H

U; l : 
han

L

V g ` P :pro


;

then

fh; lg ` P

h

?

u

�!

l

?

v

�! Q implies fh; lg ` P

l

?

v

�!

h

?

u

�! Q:

Proof Sket
h One 
an �rst show that ; ÆP has 
oloured transitions with the in-

put 
oloured H and the output by some C. By subje
t redu
tion C � L. Analysing the

form of P with Lemmas 21,20 from [35℄, and using L ( H, shows that the output term

in P is not pre�xed by the input, so the transitions 
an be permuted. 2

Information 
ow type systems: The type system di�ers from previous work [43,

30



42, 28℄ primarily in handling badly typed 
omponents. Ne
essarily, it does not provide

�ne-grain tra
king of information 
ow through these 
omponents. It also handles

nondeterminism, new name 
reation and 
hannel passing. Pre
ise 
omparisons with

related type systems are diÆ
ult as the languages involved di�er widely. One 
an,

however, embed fragments of these languages into box-� (noting that this only exploits

the fully-typed part of our 
al
ulus). For example, in the work of Smith and Volpano

[39℄ an assignment to a low se
urity variable 
an follow an assignment to a high variable

{ the program h:=3;l:=1 is well-typed. The natural translation of this program in

box-� would be

(h

?

0 j l

?

0) j h

?

y:(h

?

3 j l

?

y:l

?

1)

where the left subterm models an initial store assigning 0 to h and l. This would not

be well-typed in the system of this paper, taking h : 
han

fH;Lg

Int, l : 
han

fLg

Int and

a new base type Int. Here the low assignment is 
ausally dependent on the high, even

though no high information 
an leak. On the other hand a box-� en
oding of bran
hes

would not forbid high variable guards. In re
ent papers, type systems for 
apturing

information 
ow in the �-
al
ulus have been proposed by Honda, Vas
on
elos and

Yoshida [20℄, and by Hennessy and Riely [18℄. We leave detailed 
omparison of the

expressiveness of these systems and the � fragment of the 
ausal type system presented

here to future work.

Causal 
ow is a robust and straightforward property; it 
an be enfor
ed by a re-

markably simple type system. But, as the example above shows, it is sometimes over-


onstraining. We envisage that in a large system the bulk of the 
ode will be typeable

in a se
ure type system, a small portion will be in 
learly-identi�ed unsafe modules

that are subje
t only to 
onventional type
he
king, and a small portion (any untrusted


ode) will be en
apsulated in wrappers. Automati
 type inferen
e would be required

to relieve the burden of adding se
urity annotations to all de
larations.

7 Con
lusion

The issue of se
urely 
omposing untrusted or partially trusted 
omponents has great

pra
ti
al relevan
e. In this paper we have studied te
hniques for formally proving that

software wrappers { the glue between 
omponents { a
tually enfor
e user-spe
i�ed

information 
ow 
onstraints. We have de�ned a 
oloured operational semanti
s for a


on
urrent wrapper language. By keeping tra
k of all the prin
ipals that have a�e
ted

a pro
ess in the semanti
s it be
omes easy to formulate 
lear statements of information


ow properties. To prove that parti
ular wrappers are se
ure, we de�ned a 
ausal type

system and so only need show that the wrappers are well typed.

Throughout the paper we fo
ussed on wrapper properties { the 
al
ulus, statement

of se
urity properties and type system are all designed spe
i�
ally for wrappers { but

we believe similar te
hniques are appli
able to other situations in whi
h intera
tion

must be 
ontrolled but not 
ompletely ex
luded, for example in isolating a se
urity-


riti
al kernel of a single appli
ation, or in 
ontrolling intera
tions between pa
kets

in an a
tive network. Allowing untyped 
ode fragments in otherwise typed programs

gives a way to loosen se
urity restri
tions when ne
essary.

To make the theoreti
al work of this paper tra
table we made the simplifying as-

sumption that all 
omponents are expressed in box-�. It is important to relax this

assumption, looking at more realisti
 models. In future work it would be worth inte-

grating the 
ausal type system with a lower-level semanti
s for obje
t 
ode, su
h as the

typed assembly language of [14℄. As we note above, one would expe
t real appli
ations
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to 
ontain some (small) non-
ausally-typable parts, and perhaps also to require spe
ial

OS support for asyn
hronous intera
tion. The issue of type inferen
e of se
urity levels

should be addressed, and the proper statement of properties involving dynami
 
hanges

in information 
ow poli
y is also open.
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A Coin
iden
e of the Labelled Transition and Re-

du
tion Semanti
s

This appendix 
ontains the proof of equivalen
e of the labelled transition semanti
s and

the redu
tion semanti
s. It is divided into three parts, the �rst giving basi
 properties

of the labelled transition system, the se
ond showing that any redu
tion 
an be mat
hed

by a � -transition and the third showing the 
onverse.

A.1 Basi
 Properties of the LTS

The �rst lemmas are all proved by indu
tion on derivations of transitions.

Lemma 15 If P � Q then fn(P ) = fn(Q).

Lemma 16 If A ` P

`

�! Q then

1. fn(P ) � A

2. fn(Q) � fn(P; `)

3. if ` = x

o

v then fn(`) \ A � fn(P )

4. if ` = x

o

v then fn(o) � fn(P )

5. if ` = x

o

v and :mv(o) then x 2 fn(P )

6. if ` = x




v then fn(
) � fn(P ).

7. if ` = x




v and 
 6= n then x 2 fn(P ).

Lemma 17 (Strengthening) If A;B ` P

`

�! P

0

and B \ fn(P; `) = ; then A `

P

`

�! P

0

.

Lemma 18 (Inje
tive Substitution) If A ` P

`

�! P

0

, and f :A!B and g :(fn(`)�

A)!(N �B) are inje
tive, then B ` fP

(f+g)`

�! (f + g)P

0

.

Lemma 19 (Weakening and Strengthening) (A ` P

`

�! P

0

^ x 62 A [ fn(`)) i�

(A; x ` P

`

�! P

0

^ x 62 fn(P; `)).
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Proof The right-to-left impli
ation follows from the well-formedness of A; x and

from Lemma 17. The left-to-right impli
ation follows from the 
ondition fn(P ) � A in

the de�nition of the transition rules and from Lemma 18, taking f to be the in
lusion

from A to A; x and g the identity on fn(`)�A. 2

Lemma 20 (Shifting) 1. (A ` P

z

�

v

�! P

0

^ x 2 fn(v) � A) i� (A; x ` P

z

�

v

�! P

0

^

x 2 fn(v)� fn(P )) .

2. (A ` P

z

n

v

�! P

0

^ x 2 fn(z; v)�A) i� (A; x ` P

z

n

v

�! P

0

^ x 2 fn(z; v)� fn(P ))

Proof Sket
h Ea
h part is by two indu
tions on derivations of transitions. 2

As we are working up to alpha 
onversion a little 
are is required when analysing

transitions. We need the following lemma (of whi
h only the input and restri
tion 
ases

are at all interesting).

Lemma 21 1. A ` x

o

v

`

�! Q i� fn(x

o

v) � A, ` = x

o

v and Q � 0.

2. A ` x

�

p:P

`

�! Q i� there exists v su
h that fn(x

�

p:P ) � A, ` = x

�

v, f

v

=

p

gP is

de�ned and Q � f

v

=

p

gP .

3. A ` !x

�

p:P

`

�! Q i� there exists v su
h that fn(!x

�

p:P ) � A, ` = x

�

v, f

v

=

p

gP is

de�ned and Q � !x

�

p:P j f

v

=

p

gP .

4. A ` n[P ℄

`

�! Q i� one of the following hold.

(a) there exist x, v, and

^

P su
h that n 2 A, ` = � , A ` P

x

"

v

�!

^

P , and Q �

(� fn(x; v) �A)(x

n

v j n[

^

P ℄).

(b) there exist x and v su
h that fn(n[P ℄) � A, ` = x

n

v and Q � n[x

"

v j P ℄.

(
) there exists

^

P su
h that n 2 A, ` = � , A ` P

�

�!

^

P , and Q � n[

^

P ℄.

5. A ` P j Q

`

�! R i� either

(a) there exists

^

P su
h that fn(Q) � A, A ` P

`

�!

^

P and R �

^

P j Q.

(b) there exists x, 
, v,

^

P and

^

Q su
h that ` = � , A ` P

x




v

�!

^

P , A ` Q

x




v

�!

^

Q,

and R � (� fn(x; v) �A)(

^

P j

^

Q).

or symmetri
 
ases.

6. A ` (� x)P

`

�! Q i� either

(a) there exists x̂ 62 A[ fn(`)[ (fn(P )�x) and

^

Q su
h that A; x̂ ` f

x̂

=

x

gP

`

�!

^

Q

and Q � (� x̂)

^

Q.

(b) there exists y, o, v,

^

Q and x̂ 62 A [ fn(y; o) [ (fn(P )� x) su
h that ` = y

o

v,

A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o) and Q �

^

Q.
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(
) there exists y, o, v,

^

Q and x̂ 62 A [ fn(o) [ (fn(P ) � x) su
h that ` = y

o

v,

A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q �

^

Q.

Proof Sket
h The right-to-left impli
ations are all shown using a single transition

rule together with (Trans Stru
t Right). The left-to-right impli
ations are shown by

indu
tion on derivations of transitions. 2

A.2 Redu
tions Imply Transitions

Take the size of a derivation of a stru
tural 
ongruen
e to be number of instan
es of

inferen
e rules 
ontained in it.

Lemma 22 If P

0

� P and f

v

=

p

gP is de�ned then f

v

=

p

gP

0

is de�ned and f

v

=

p

gP

0

�

f

v

=

p

gP . Moreover, for any derivation of P

0

� P there is a derivation of the same size

of f

v

=

p

gP

0

� f

v

=

p

gP .

Proof Sket
h Immediate. 2

Proposition 23 If P

0

� P then A ` P

0

`

�! Q i� A ` P

`

�! Q.

Proof Sket
h A lengthy indu
tion on the size of derivation of P

0

� P . The most

interesting 
ases are for the stru
tural 
ongruen
e axioms for s
ope extrusion a
ross

parallel 
omposition and boxes. 2

Lemma 24 If fn(P ) � A and P ! Q then A ` P

�

�! Q.

Proof Sket
h Indu
tion on derivations of P ! Q, 
onstru
ting derivations of � -

transitions for the redu
tion axioms (Red Up), (Red Down), (Red Comm) and (Red

Repl), and using Proposition 23 for the (Red Stru
t) 
ase. We give the �rst three 
ases

in detail.

(Red Up)

A ` x

"

v

x

"

v

�! 0

(Trans Out)

A ` x

"

v j Q

x

"

v

�! 0 j Q

(Trans Par)

A ` n[x

"

v j Q℄

�

�! (� fn(x; v) �A)(x

n

v j n[0 j Q℄)

(Trans Box-1)

By the premise fn(n[x

"

v j Q℄) � A we have fn(x; v) � A, so using (Trans Stru
t

Right) we have A ` n[x

"

v j Q℄

�

�! x

n

v j n[Q℄, the right hand side of whi
h is

exa
tly the right hand side of (Red Up).

(Red Down)

A ` x

n

v

x

n

v

�! 0

(Trans Out)

x 2 A

A ` n[Q℄

x

n

v

�! n[x

"

v j Q℄

(Trans Box-2)

A ` x

n

v j n[Q℄

�

�! (� fn(v)�A)(0 j n[x

"

v j Q℄)

(Trans Comm)
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By the premise fn(x

n

v j n[Q℄) � A we have x 2 A and also fn(v) � A, so using

(Trans Stru
t Right) we have A ` x

n

v j n[Q℄

�

�! n[x

"

v j Q℄, the right hand side

of whi
h is exa
tly the right hand side of (Red Down).

(Red Comm)

A ` x

�

v

x

�

v

�! 0

(Trans Out)

A ` x

�

p:P

x

�

v

�! f

v

=

p

gP

(Trans In)

A ` x

�

v j x

�

p:P

�

�! (� fn(v)�A)(0 j f

v

=

p

gP )

(Trans Comm)

The side 
ondition f

v

=

p

gP de�ned for (Trans In) is ensured by the same 
ondition

for (Red Comm). By the premise fn(x

�

v j x

�

p:P ) � A we have fn(v) � A, so

using (Trans Stru
t Right) we have A ` x

�

v j x

�

p:P

�

�! f

v

=

p

gP , the right hand

side of whi
h is exa
tly the right hand side of (Red Comm).

2

A.3 Transitions Imply Redu
tions

For the 
onverse dire
tion we �rst show that if a pro
ess has an output or input

transition then it 
ontains a 
orresponding output, input or box subterm.

Lemma 25 If A ` P

z

o

v

�! P

0

then P � (� fn(z; v)�A)(z

o

v j P

0

)

Proof Sket
h Indu
tion on derivation of A ` P

z

o

v

�! P

0

. 2

Lemma 26 If A ` Q

x

�

v

�! Q

0

then there exist B; p;Q

1

and Q

2

su
h that B \ (A [

fn(x

�

v)) = fg and either Q � (� B)(x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or

Q � (� B)(! x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j !x

�

p:Q

1

j Q

2

).

Proof Sket
h Indu
tion on derivation of A ` Q

x

�

v

�! Q

0

. 2

Lemma 27 If A ` Q

x

n

v

�! Q

0

then there exist B, Q

1

and Q

2

su
h that B \ (A [

fn(x

n

v)) = fg, Q � (� B)(n[Q

1

℄ j Q

2

) and Q

0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

).

Proof Sket
h Indu
tion on derivation of A ` Q

x

n

v

�! Q

0

. 2

Lemma 28 If A ` P

�

�! Q then P ! Q.

Proof Sket
h Indu
tion on derivations of A ` P

�

�! Q, using the pre
eding three

lemmas for the (Trans Box-1) and (Trans Comm) rules. 2

The proof of Theorem 1, i.e. that if fn(P ) � A then A ` P

�

�! Q i� P ! Q, is

now immediate from Lemmas 24 and 28.
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B Purity and Honesty

This appendix sket
hes the proofs of purity and honesty results. We �rst give another

transition-analysis lemma. This allows us to rename extruded names in a label instead

of in the sour
e pro
ess term.

Lemma 29 If A ` (�N)P

`

�! Q, ` = y

"

v, and A, N and M are pairwise disjoint

�nite sets of names then there exists a partition N

1

; N

2

of N , a pro
ess P

0

, and

h :(fn(`)�A)!(N � (A;N

2

;M))

inje
tive su
h that

A;N ` P

(1

A

+h)`

�! P

0

A ` (�N)P

(1

A

+h)`

�! (�N

2

)P

0

� (1

A

+ h)Q

N

2

= N � fn((1

A

+ h)`)

Proof Sket
h Indu
tion on N , using Lemmas 18 and Lemma 21.6. 2

The simple se
urity properties are proved using an expli
it 
hara
terisation of the

states and labelled transitions of W

1

(P ). If N is a �nite set of names, a is a name and

A and Q are pro
esses de�ne

[[a;N ;A;Q℄℄

def

= (�N [ fag)

�

A

j a[Q℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

Say the 4-tuple a, N , A, Q is good if N , fag, and fin; outg are pairwise disjoint, A is

a parallel 
omposition of outputs of the forms

out

a

v; out

"

v; in

a

v; x

a

v where x 62 fout; ag

with a 62 fn(v) in ea
h 
ase, and Q is a pro
ess with a 62 fn(Q). Say a pro
ess P is

good if P � [[a;N ;A;Q℄℄ for some good a, N , A, Q.

Lemma 30 If a 62 fn(P ) then W

1

(P ) � [[a; ;; 0;P ℄℄, hen
e W

1

(P ) is good.

Proof Sket
h Straightforward. 2

We de�ne a transition relation A ` P

`

* Q as the least satisfying the following rules.

t

1

A ` [[a;N ;A;Q℄℄

in

"

v

* [[a;N ;A j in

a

v;Q℄℄ fn(v) \ (N [ fag) = ;

t

2

A ` [[a;N ;A j in

a

v;Q℄℄

�

* [[a;N ;A;Q j in

"

v℄℄

t

4

A;N; a ` Q

out

"

v

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N; fn(v)� (A;N; a);A j out

a

v;Q

0

℄℄

t

5

A;N; a ` Q

x

"

v

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N; fn(x; v)� (A;N; a);A j x

a

v;Q

0

℄℄

t

6

A ` [[a;N ;A j out

a

v;Q℄℄

�

* [[a;N ;A j out

"

v;Q℄℄

t

7

A ` [[a;N ;A j out

"

v;Q℄℄

out

"

v

* [[a;N � fn(v);A;Q℄℄

t

8

A;N; a ` Q

�

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N ;A;Q

0

℄℄
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A ` P

`

* P

0

P

0

� P

00

A ` P

`

* P

00

For rule t

5

, we have a side 
ondition that x 6= out. For all rules we have a side
ondition

that the 4-tuple in the left hand side of the 
on
lusion is good. For all rules we have a

side
ondition that the free names of the pro
ess on the left hand side of the 
on
lusion

are 
ontained in A.

Lemma 31 If A ` P

`

* P

0

then P

0

is good.

Proof By inspe
tion of the transition axioms, 
he
king that the 4-tuple on the

right hand side is good in ea
h 
ase, and noting that the de�nition of P good is pre-

served by stru
tural 
ongruen
e. For t

4

by the 
ondition fn([[a;N ;A;Q℄℄) � A we

have fin; outg � A so fin; outg \ (fn(v) � (A;N; a)) = ;. By Lemma 16.3 a 62 fn(v)

By Lemma 16.2 a 62 fn(Q

0

). For t

5

by the 
ondition fn([[a;N ;A;Q℄℄) � A we have

fin; outg � A so fin; outg \ (fn(x; v) � (A;N; a)) = ;. By Lemma 16.3 a 62 fn(x; v)

By Lemma 16.2 a 62 fn(Q

0

). For t

8

by Lemma 16.2 a 62 fn(Q

0

). The other 
ases are

straightforward. 2

Lemma 32 For all good P we have A ` P

`

�! P

0

i� A ` P

`

* P

0

.

Proof Sket
h We �rst show that A ` P

`

* P

0

implies A ` P

`

�! P

0

, by indu
tion

on derivations of the former. The 
onverse dire
tion is by a 
ase analysis of the possible

transition derivations. 2

Proof Sket
h (of Proposition 2 (Purity)) We show by indu
tion on k that Q is

good and that the 
on
lusion holds. The k = 0 
ase is by Lemma 30. The indu
tive

step uses Lemmas 31 and 32. 2

Proof Sket
h (of Proposition 5 (Honesty)) To 
he
k that the unary wrapper W

1

is honest, if N is a �nite set of names, a is a name and A and Q are pro
esses de�ne

hhha;N ;A;Qiii

def

= Q

j fj out

"

v j out

a

v 2 A jg

j fj out

"

v j out

"

v 2 A jg

j fj x

"

v j x

a

v 2 A ^ x 6= out jg

j fj in

"

v j in

a

v 2 A jg

hha;N ;A;Qii

def

= (�N)hhha;N ;A;Qiii

Note that if a;N ;A;Q is good then a 62 fn(hha;N ;A;Qii). Now take the family of

relations below.

R

A

= � Æf [[a;N ;A;Q℄℄; hha;N ;A;Qii j a;N ;A;Q good and fn([[a;N ;A;Q℄℄) � A gÆ �

Wemust 
he
k that for any P with a 62 fn(P ) and A � fn(W

1

(P )) we haveW

1

(P ) R

A

P

and that R is an h-bisimulation. The former follows from Lemma 30 and the fa
t

hha; ;; 0;P ii � P . For the latter there are a number of 
ases to 
he
k; we omit the

details. 2
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C Causality Typing: Soundness and Appli
ation

This appendix gives the soundness proofs for the type system (of the Subje
t Redu
-

tion and Limited Runtime Error theorems) and the proof that F has the 
ausal 
ow

property.

C.1 Soundness

The proof of Subje
t Redu
tion is divided into three main parts. First we require

lemmas giving 
onditions under whi
h a substitution is well-de�ned and well-typed

(here `good'). We then prove substitution lemmas for values and pro
esses by indu
tion

on typing derivations, and �nally the Subje
t Redu
tion result by indu
tion on pairs

of transition and typing derivations. The Limited Runtime Error result is almost an

immediate 
onsequen
e of these lemmas.

Say �;� ` f

u

=

p

g good i� f

u

=

p

g is well-de�ned, dom(f

u

=

p

g) = dom(�), and 8x :T 2

� : � ` f

u

=

p

gx :T . We adopt the 
onvention below that wherever t
(�; v; T ) is men-

tioned it is also assumed well-de�ned.

Lemma 33 If � =

V

i21::n

�

i

and for some j 2 1::n �

j

` v :T then � ` v :T .

Proof Sket
h Indu
tion on derivation of �

j

` v :T , using the fa
t that atomi


types are down-
losed in the (Name) 
ase. 2

Lemma 34 (t
) If �

def

= t
(�; v; T ) then � atomi
 and �;� ` v :T .

Proof Sket
h The �rst part is by indu
tion on v, noting that the set of atomi


types is 
losed under de�ned glbs. The se
ond part is also by indu
tion on v. 2

Lemma 35 If � atomi
 then t
(�; v;>) is well-de�ned and is equal to the type 
ontext

mapping ea
h x 2 fn(v)� dom(�) to name.

Proof Sket
h Indu
tion on v. 2

Lemma 36 (Goodness - Standard - Preliminary) If

� atomi


� ` u :U

` p :U B �

then �;� ` f

u

=

p

g good.

Proof Sket
h By indu
tion on the two typing derivations, with 
ase analysis on

the last rule of the pattern judgement. 2

Note that this result requires that the range of � 
ontains no tuple types. Consider

u = x, U = hbox

K

box

K

i, � = x :U and p =

(

y z

)

. We have ` p :U B y :box

K

; z :box

K

but f

x

=

(

y z

)

g is not well-de�ned.
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Lemma 37 (Goodness - Dynami
) If

� atomi


` p :S B �

dom(�) and dom(�) disjoint

f

u

=

p

g well de�ned

� 
at (so ran(�) � f>;nameg)

8y :name 2 � : f

u

=

p

gy is a name

p 
ontains no wild
ards

then �

def

= t
(�; u; S) is well-de�ned, ran(�) � fnameg, and �;�;� ` f

u

=

p

g good.

Proof Sket
h By indu
tion on the pattern p, using Lemmas 35 and 33 in the vari-

able and tuple 
ases. 2

Lemma 38 (Substitution - values) If

�;� ` v :T

�;�;� ` f

u

=

p

g good

then f

u

=

p

gv is well-de�ned and �;� ` f

u

=

p

gv :T

Proof Sket
h By �;�;� ` f

u

=

p

g good we have that f

u

=

p

g is well-de�ned, so f

u

=

p

gv

is well-de�ned. The se
ond part is proved by indu
tion on the value typing derivation.

2

Note that for this to hold the typing rules must ensure that names of tuple types do

not have type name. Note also that this lemma does not require any atomi
ity, and

that that is important in the �rst input 
lause of the pro
ess substitution lemma.

Lemma 39 (Substitution - pro
esses) If

�;� ` P :pro


K

�;�;� ` f

u

=

p

g good

then (1) if f

u

=

p

gP is well-de�ned then �;� ` f

u

=

p

gP :pro


K

and (2) if P 
ontains no

subterm n[Q℄ then f

u

=

p

gP is well-de�ned.

Proof Sket
h We prove both parts simultaneously by indu
tion on the size of type

derivation for P . For (1) we give two instan
es of ea
h typing rule; in ea
h 
ase showing

that the premises of the right-hand instan
e follow from those of the left-hand instan
e.

This uses Lemma 38. 2

To see the need for the 
ondition that P is box-free, 
onsider � = ;, � = x :hnamenamei,

� = z :name, P = (� n)n[x

?

hi

℄, and f

u

=

p

g = f

h

z z

i

=

x

g. The premises of the Lemma

hold, but f

u

=

p

gP is not well-de�ned.

Lemma 40 (Painting { Ja
kson Polla
k style) If

� ` P :pro


K

C � K

then � ` C ÆP :pro


K
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Proof Sket
h Routine indu
tion on typing derivations. 2

Lemma 41 If � ` v :T then t
(�; v; T ) = ;.

Proof Sket
h Routine indu
tion on v. 2

Lemma 42 If dom(�) is disjoint from dom(�), fn(v) and fn(P ) then

1. � ` v :T () �;� ` v :T .

2. t
(�; v; T ) = t
((�;�); v; T ).

3. � ` P :pro


K

() �;� ` P :pro


K

Proof Sket
h Routine indu
tions. 2

Lemma 43 If t
((�; y :U); v; T ) well-de�ned and y 2 fn(v) then there exists some V

with U � V and t
(�; v; T ) = t
((�; y :U); v; T ); y :V .

Proof Sket
h Indu
tion on v, using Lemma 42.2. 2

Lemma 44 If �; y :U atomi
, � � t
((�; y :U); v; T ) and y 2 fn(v) then �; y :U �

t
(�; v; T ).

Proof An immediate 
orollary of Lemma 43, whi
h gives that there exists some V

with U � V and t
(�; v; T ) = t
((�; y :U); v; T ); y :V . 2

Lemma 45 (Stru
tural Congruen
e) If � ` P :pro


K

and P � Q then � ` Q :pro


K

.

Proof Sket
h Indu
tion on derivations of P � Q. 2

Say � � �

0

i� dom(�) = dom(�

0

) and 8x 2 dom(�) : �(x) � �

0

(x).

Lemma 46 If � � �

0

and �

0

` v :T then � ` v :T .

Proof Sket
h Indu
tion on typing derivation of v. 2

Lemma 47 If � � �

0

and �

0

; � ` f

u

=

p

g good then �;� ` f

u

=

p

g good.

Proof By the de�nition of good and Lemma 46. 2

Lemma 48 If A ` P

x

o

v

�!

C

Q then C � pn(P ) and pn(Q) � pn(P ).

Proof Sket
h Routine indu
tion on transition derivations. 2

We 
an now restate and prove Theorem 10.
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Theorem 49 (subje
t redu
tion)

1. If � `

K

P

x

o

v

�!

C

Q and o 2 f?; "g then for some K

0

; T

� ` x : 
han

K

0

T

there exists � � t
(�; v; T ) su
h that �;� ` Q :pro


K

C � K

0

2. If � `

K

P

x

"

v

�!

C

Q then for some K

0

; T

there exists � � t
(�;

h

x v

i

; h
han

K

0

T T i) su
h that �;� ` Q :pro


K

C � K

0

3. If � `

K

P

x

a

v

�!

C

Q then for some K

0

� ` a :box

K

0

there exists � � t
(�;

h

x v

i

; hname; >i) su
h that �;� ` Q :pro


K

C � K

0

4. If � `

K

P

x

a

v

�!

C

Q then for some K

0

� ` a :box

K

0

� ` x :name

there exists � � t
(�; v;>) su
h that �;� ` Q :pro


K

C � K

0

5. If � `

K

P

x




v

�!

C

Q and 
 2 f?; "g then for some K

0

, T � ` x : 
han

K

0

T . If

moreover

� � t
(�; v; T )

C � K

0

then �;� ` Q :pro


K

.

6. If � `

K

P

x

a

v

�!

C

Q then for some K

0

� K

00

, and S we have � ` a :box

K

0

, � `

x : 
han

K

00

S, t
(�; v; S) well-de�ned, and ran(t
(�; v; S)) � fnameg. If moreover

� � t
(�; v; S)

C � K

00

then �;� ` Q :pro


K

.

7. If � `

K

P

x

a

v

�!

C

Q then for some K

0

we have � ` a :box

K

0

. If moreover

� � t
(�;

h

x v

i

; hname>i)

C � K

0

then �;� ` Q :pro


K

.

8. If � `

K

P

�

�!

C

Q then C = ; and � ` Q :pro


K

.

41



Proof We give �rst the output part, for 
lauses 1{4, then the input part, for 5{

7, then the tau part, for 8. Ea
h is by indu
tion on pairs of transition and typing

derivations.

Output Consider the last pair of rules used:

(Out),(Out-?; "; ") Take K

0

= K and 
onsider 
ases of o:

1: ?; " By Lemma 41 we 
an take � = t
(�; v; T ) = ;.

2: " By Lemma 41 we 
an take � = t
(�;

h

x v

i

; h
han

K

0

T T i) = ;:

(Out),(Out-a; a) Take K

0

= K and 
onsider 
ases of o:

3: a By Lemma 41 we 
an take � = t
(�;

h

x v

i

; hname; >i) = ;.

4: a By Lemma 41 we 
an take � = t
(�; v;>) = ;:

(Stru
t),(*) 1{4 follow from the same 
lauses of the indu
tion hypothesis and Lemma 45.

(*),(Spe
) 1{4 follow from the same 
lauses of the indu
tion hypothesis and a use of

(Spe
) for Q.

(Par),(Par) Consider � `

K

P j P

0

`

�!

C

Q j P

0

with � `

K

P

`

�!

C

Q. 1{4 follow from

the same 
lauses of the indu
tion hypothesis and a use of Lemma 42.3 for P

0

.

(Res-1),(Res) Consider � `

K

(� y)P

`

�!

C

(� y)Q with �; y :U `

K

P

`

�!

C

Q, ` an

output x

o

v and y 62 fn(`). Suppose o 2 f?; "g. By 
lause 1 of the indu
tion

hypothesis for some K

0

; T

�; y :U ` x : 
han

K

0

T

there exists � � t
((�; y :U); v; T ) su
h that �; y :U;� ` Q :pro


K

C � K

0

By Lemma 42.1 � ` x : 
han

K

0

T . By Lemma 42.2 t
((�; y :U); v; T ) = t
(�; v; T ),

so taking the same � and using the (Res) typing rule we have �;� ` (� y)Q :pro


K

as required. The other 
ases of o are similar.

(Res-2),(Res) Consider � `

K

(� y)P

`

�!

C

Q with �; y :U `

K

P

`

�!

C

Q, ` an output

x

o

v and y 2 fn(`).

Case :mv(o). We have o 2 f?; "; ag and y 2 fn(v)� fn(x; o).

Suppose o 2 f?; "g. By 
lause 1 of the indu
tion hypothesis for some K

0

; T

�; y :U ` x : 
han

K

0

T

there exists � � t
((�; y :U); v; T ) su
h that �; y :U;� ` Q :pro


K

C � K

0

By Lemma 42.1 � ` x : 
han

K

0

T . By Lemma 44 �; y :U � t
(�; v; T ). The


ase o = a, for 
lause 4, is similar.

Case mv(o). We have o 2 f"; ag and y 2 fn(x; v) � fn(o).

Suppose o =". By 
lause 2 of the indu
tion hypothesis for some K

0

; T

there exists � � t
((�; y :U);

h

x v

i

; h
han

K

0

T T i) su
h that �; y :U;� ` Q :pro


K

C � K

0

By Lemma 44 �; y :U � t
(�;

h

x v

i

; h
han

K

0

T T i). The 
ase o = a, for 
lause

3, is similar.
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Input Consider the last pair of rules used:

(In)(In-?; ") Clause 5. Take K

0

= K. By t
(�; v; T ) de�ned and Lemma 34 we have

t
(�; v; T ) atomi
 and �; t
(�; v; T ) ` v :T . It follows that � atomi
 and by

Lemma 46 �;� ` v :T . By Lemma 36 �;�;� ` f

v

=

p

g good. By the de�nition of

labelled transitions f

v

=

p

gP is well-de�ned so by Lemma 39 �;� ` f

v

=

p

gP :pro


K

.

By Lemma 40 �;� ` C Æf

v

=

p

gP :pro


K

.

(In)(In-a) Clause 6. Take K

00

= K. By the de�nition of labelled transitions f

v

=

p

gP is

well-de�ned so f

v

=

p

g is well-de�ned. As P tests all y :name 2 � and f

v

=

p

gP is de-

�ned 8y :name 2 � : f

v

=

p

gy is a name. By Lemma 37 t
(�; v; S) is well-de�ned,

ran(t
(�; v; S)) � fnameg, and �; t
(�; v; S);� ` f

v

=

p

g good. By Lemma 47

�;�;� ` f

v

=

p

g good. By Lemma 39 �;� ` f

v

=

p

gP :pro


K

. By Lemma 40

�;� ` C Æf

v

=

p

gP :pro


K

.

(Repl)(Repl-?; ") and (Repl)(Repl-a) Similar to the two 
ases above.

(Box-2)(Box) Clause 7. Take K

0

= K. To 
he
k �;� ` n[C :x

"

v j P ℄ :pro


K

observe

that �;� ` n :box

K

by weakening, pn(C : x

"

v j P ) � C [ pn(P ) � K, and

fn(C :x

"

v j P ) � fn(x; v) [ fn(P ) � dom(�;�).

(Stru
t),(*) 5{7 follow from the same 
lauses of the indu
tion hypothesis and Lemma 45.

(*),(Spe
) 5{7 follow from the same 
lauses of the indu
tion hypothesis and a use of

(Spe
) for Q.

(Par),(Par) Consider � `

K

P j P

0

`

�!

C

Q j P

0

with � `

K

P

`

�!

C

Q. 5{7 follow from

the same 
lauses of the indu
tion hypothesis and a use of Lemma 42.3 for P

0

.

(Res-1)(Res) Consider � `

K

(� y)P

`

�!

C

(� y)Q with �; y :U `

K

P

`

�!

C

Q, ` an

input x




v and y 62 fn(`). Suppose 
 2 f?; "g. By 
lause 5 of the indu
tion

hypothesis for some K

0

, T �; y :U ` x : 
han

K

0

T and

� � t
((�; y :U); v; T )

C � K

0

implies �; y :U;� ` Q :pro


K

. By y 62 fn(`) we have � ` x : 
han

K

0

T . Now

suppose

� � t
(�; v; T )

C � K

0

By Lemma 42.2 t
(�; v; T ) = t
((�; y :U); v; T ) so by the impli
ation in the in-

du
tion hypothesis �; y :U;� ` Q :pro


K

, hen
e �;� ` (� y)Q :pro


K

. The 
ase

of 
 = a, for 7, is similar.

Now suppose 
 = a. By 
lause 6 of the indu
tion hypothesis for some K

0

� K

00

,

and S we have �; y :U ` a :box

K

0

, �; y :U ` x : 
han

K

00

S, t
((�; y :U); v; S) well-

de�ned, and ran(t
((�; y :U); v; S)) � fnameg. Moreover

� � t
((�; y :U); v; S)

C � K

00

implies �; y :U;� ` Q :pro


K

.

As y 62 fn(`) the various strengthening results suÆ
e to show 
lause 6.

43



Tau Consider the last pair of rules used:

(Comm)(Par) We have

� `

K

1

P

1

x




v

�!

C

P

0

1

� `

K

2

P

2

x




v

�!

C

P

0

2

� `

K

1

\K

2

P

1

j P

2

�

�!

;

(� fn(x; v) � dom(�))(P

0

1

j P

0

2

)

(Comm)

Consider 
ases of 
 and the 
orresponding output and input 
lauses:

Case ?; " 1,5. By the indu
tion hypotheses there exists � � t
(�; v; T ) su
h

that �;� ` P

0

1

:pro


K

1

and �;� ` P

0

2

:pro


K

2

. By the (Par) and (Res)

typing rules � ` (� fn(x; v) � dom(�))(P

0

1

j P

0

2

) :pro


K

1

\K

2

.

Case a 4,6 By 
lause 4 of the indu
tion hypothesis there exists � � t
(�; v;>)

su
h that �;� ` P

0

1

:pro


K

1

. By Lemma 35 t
(�; v;>) is the type 
ontext

mapping ea
h x 2 fn(v)� dom(�) to name.

By 
lause 4 C � K

0

and by 
lause 6 K

0

� K

00

so C � K

00

.

By 
lause 6 of the indu
tion hypothesis t
(�; v; S) is well-de�ned and has

range 
ontained in fnameg, so t
(�; v; S) = t
(�; v;>), so � � t
(�; v; S),

so �;� ` P

0

2

:pro


K

2

.

By the (Par) and (Res) typing rules � ` (� fn(x; v)�dom(�))(P

0

1

j P

0

2

) :pro


K

1

\K

2

.

Case a 3,7 Similar to 
ase ?; " above.

(Par)(Par) By the indu
tion hypothesis.

(Box-1)(Box) We have

dom(�) ` P

x

"

v

�!

C

Q

dom(�) ` n[P ℄

�

�!

;

(� fn(x; v) � dom(�))(C :x

n

v j n[Q℄)

(Box-1)

and

� ` n :box

K

pn(P ) � K

fn(P ) � dom(�)

� ` n[P ℄ :pro


K

(Box)

Note that we do not have � ` P :pro


K

, so the indu
tion hypothesis is not

appli
able.

Take � = t
(�;

h

x v

i

;>).

By weakening �;� ` n :box

K

. By Lemma 48 pn(Q) � K. In addition we have

fn(Q) � dom(�;�), so �;� ` n[Q℄ :pro


K

.

We have also �;� ` x :name, �;� ` v :> and (again by Lemma 48) C � K, so

�;� ` C :x

n

v :pro


K

.

By the (Par) and (Res) typing rules � ` (� fn(x; v)�dom(�))(C :x

n

v j n[Q℄) :pro


K

.

(Box-3)(Box) As a � transitions 
annot in
rease the prin
ipal set or free name set of

a pro
ess.

(Res-1)(Res) By the indu
tion hypothesis.
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(Stru
t)(*) Follows from the indu
tion hypothesis and Lemma 45.

(*)(Spe
) Follows from the indu
tion hypothesis and a use of (Spe
) for Q.

2

Proof (of Theorem 11) By � ` P :pro


K

and for some T andK, we get x : 
han

K

T 2

�. Furthermore, we have � ` v :T and sin
e 
 2 f?; "g we also have � ` p :T .

By Lemma 36 and the fa
ts that � atomi
, � ` v :T and ` p :T B �, we have

�;� ` f

v

=

p

g good. By Lemma 39 and the fa
ts that P does not 
ontain a box,

�;� ` P

0

:pro


0

K

and �;� ` f

v

=

p

g good, we have f

v

=

p

gP is well-de�ned. 2

C.2 Proving Causal Flow for F

The proof that F has the 
ausal 
ow property is a straightforward indu
tion on the

tra
es of F(P;Q) using the Subje
t Redu
tion theorem.

Proof (of Theorem 13) Consider an instantiation F(P;Q) and 
oloured tra
e

A ` ; ÆF(P;Q)

`

1

�!

C

1

R

1

: : :

`

k

�!

C

k

R

k

;

su
h that all inputs on in

1

in `

1

::`

k

are 
oloured with p and all inputs on in

2

are


oloured with q.

By the de�nition of transitions (if k � 1) we have fn(F(P;Q)) � A.

Let �

0

be the type environment for in

1

, in

2

, out

1

, out

2

, from and to, as in the

statement of Theorem 12.

Let �

1

be the type environment mapping fn(P;Q) � dom(�

0

) to name and � =

�

0

;�

1

. Clearly � atomi
.

By the de�nition of instantiation we have fn(P;Q) � dom(�)� fa; bg.

By Theorem 12 � ` ; ÆF(P;Q) :pro


p

.

By F pure we know the `

j

have the form � , in

i

"

v, or out

i

"

v, for i 2 f1; 2g.

Take R

0

= ; ÆF(P;Q) and �

0

= ;. We now show by indu
tion on k that for all j 2

1::k `

j

= out

1

"

v =) q 62 C

j

and there exists �

j

atomi
 su
h that �;�

j

` R

j

:pro


p

.

Consider the transition R

k�1

`

k

�!

C

k

R

k

. We have �;�

k�1

atomi
, �;�

k�1

`

R

k�1

:pro


p

, and dom(�;�

k�1

) ` R

k�1

`

k

�!

C

k

R

k

, so

�;�

k�1

`

p

R

k�1

`

k

�!

C

k

R

k

Consider 
ases of `

j

.

Case out

1

"

v. By Theorem 10 for some K

0

; T we have C

k

� K

0

and there exists � �

t
(�;�

k�1

;

h

out

1

v

i

; h
han

K

0

T T i) su
h that �;�

k�1

;� ` R

k

:pro


p

.

As t
(:::) is de�ned and out

1

: 
han

p

> 2 � we have K

0

= fpg and T = >, so

C

k

� fpg, so q 62 C

k

.

Take �

k

= �

k�1

;�; it is 
learly atomi
.

Case in

1

"

v. By Theorem 10 for some K

0

, T we have �;�

k�1

` in

1

: 
han

K

0

T . If

moreover C

k

� K

0

and � � t
(�;�

k�1

; v; T ) then �;�

k�1

;� ` R

k

:pro


p

.

As in

1

: 
han

p

> 2 � we have K

0

= fpg and T = >. By the premises C

k

� fpg.

As T = > we have t
(�;�

k�1

; v; T ) de�ned and atomi
; take � equal to this and

�

k

= �

k�1

;�.
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The other 
ases are similar. 2
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