
Se
ure Composition of Untrusted Code:

Box �, Wrappers, and Causality Types

Peter Sewell

Computer Laboratory

University of Cambridge

Peter.Sewell�
l.
am.a
.uk

Jan Vitek

Department of Computer S
ien
es

Purdue University

jv�
s.purdue.edu

Mar
h 29, 2002

Abstra
t

Software systems are be
oming heterogeneous: instead of a small number of

large programs from well-established sour
es, a user's desktop may now
onsist

of many smaller
omponents that intera
t in intri
ate ways. Some
omponents

will be downloaded from the network from sour
es that are only partially trusted.

A user would like to know that a number of se
urity properties hold, e.g. that

personal data is not leaked to the net, but it is typi
ally infeasible to verify that

su
h
omponents are well-behaved. Instead, they must be exe
uted in a se
ure

environment that provides �ne-grain
ontrol of the allowable intera
tions between

them, and between
omponents and other system resour
es.

In this paper, we
onsider the problem of assembling
on
urrent software sys-

tems from untrusted or partially trusted o�-the-shelf
omponents, using wrapper

programs to en
apsulate
omponents and enfor
e se
urity poli
ies. We introdu
e

a model programming language, the box-�
al
ulus, that supports
omposition of

software
omponents and the enfor
ement of information
ow se
urity poli
ies.

Several example wrappers are expressed using the
al
ulus; we explore the del-

i
ate se
urity properties they guarantee. We present a novel
ausal type system

that stati
ally
aptures the allowed
ows between wrapped possibly-badly-typed

omponents; we use it to prove that an example ordered pipeline wrapper enfor
es

a
ausal
ow property.

1

1 Introdu
tion

Software systems are evolving. In
reasingly, monolithi
 appli
ations are being repla
ed

with assemblages of software
omponents
oming from di�erent sour
es. Instead of a

small number of large programs from well-established suppliers, nowadays a user's

desktop is made up of many smaller appli
ations and software modules that intera
t

in intri
ate ways to
arry out a variety of information pro
essing tasks. Moreover,

whereas it used to be that a software base was fairly stati
 and
ontrolled by a system

administrator, it is now easy to download
ode from the network and even extend

appli
ation programs while they are running. These
omponents are obtained from

di�erent untrusted or partially-trusted sour
es and they may be faulty or mali
ious,

or designed with a weaker se
urity poli
y that the user requires { what is legitimate

marketing data to a vendor may be
onsidered sensitive by a user. It is diÆ
ult for a

user to gain assuran
e that the
omposed system is se
ure.

In su
h
uid operating environments, traditional se
urity me
hanisms and poli
ies

appear almost irrelevant. While passwords and a

ess
ontrol me
hanisms are adequate

to prote
t the integrity of the
omputer system as whole, they utterly fail to address

the issue of prote
ting the user from downloaded
ode being run from her a

ount

[21, 15, 27℄. Approa
hes su
h as the Java sandbox that promise se
urity by isolation

are not satisfa
tory either, as they propose a model in whi
h
omponents
an either

intera
t freely or not at all [16℄.

While it is not feasible, in general, to analyse or modify third-party software pa
k-

ages, it is possible to inter
ept the
ommuni
ations between a pa
kage and the other

parts of the system, interposing
ode at the boundaries of the di�erent software
om-

ponents to observe and modify the data passing through [22, 44, 13, 12, 10, 4, 15℄.

Interposition te
hniques e�e
tively en
apsulate untrusted
omponents in wrapper pro-

grams that have full
ontrol over the intera
tions between en
apsulated
omponents

and the OS and over the intera
tions among
omponents. The
ode of a wrapper
an,

for instan
e, perform a

ess
ontrol
he
ks, audit, attempt to dete
t intruders, and even

monitor
overt
hannels. Clearly, writing wrappers should not be left to the end-user.

Rather we envision wrappers as reusable software
omponents; users should then only

have to pi
k the most appropriate wrappers,
ustomize them with some parameters

and install them. All of this pro
ess should be dynami
: wrappers must be no harder

to add to a running system than new appli
ations. Ultimately, end users will require

a
lear des
ription of the properties guaranteed by their wrappers.

Pra
ti
al work on wrappers underlines the diÆ
ulty of understanding exa
tly what

these guarantees are. For example, in [12℄ Fraser, Badger and Feldman presented a

system that splits the task of writing a wrapper into two parts. The wrapper's body

is written in a variant of C
alled the Wrapper De�nition Language. The dynami

aspe
ts of
reating wrappers and instantiating
on
urrently exe
uting
omponents are

spe
i�ed in the Wrapper Life Cy
le framework. While quite expressive, their approa
h

does not provide guarantees that the wrappers a
tually enfor
e the desired se
urity

poli
ies. The powerful wrapper language, the fa
t that all wrappers exe
ute in kernel

mode, and the fa
t that
omponents are
on
urrent
ombine to make it diÆ
ult to

understand pre
isely what properties a wrapper enfor
es.

Our work in the
urrent paper explores se
ure
omposition using wrappers, fo-

ussing on the rigorous statement and proof of their se
urity properties. To express and

reason about wrappers we require a small programming language, with a well-de�ned

semanti
s, that allows the
omposition of
on
urrently-exe
uting software
omponents

to be expressed straightforwardly and also supports the enfor
ement of se
urity poli-

2

ies. We have therefore abstra
ted the essential aspe
ts of the problem in a pro
ess

al
ulus: the box-�
al
ulus, introdu
ed in Se
tion 2. Box-� is a minimal extension

of the �-
al
ulus [26℄ with en
apsulation; it is expressive enough to
ode non-trivial

wrappers and the
on
urrent
omposition of
omponents, but retains the simpli
ity

and tra
table semanti
s needed for proving properties. Moreover Pi
t [29℄ demon-

strates how to build a real programming language above a �-
al
ulus
ore; a similar

approa
h
ould be used for box-�.

Several wrappers are expressed in box-� in Se
tion 3. We begin with a simple exam-

ple, the wrapper W

1

. It en
apsulates a single
omponent and
ontrols its intera
tions

with the environment, limiting them to two
hannels in and out . W

1

is written as a

unary
ontext in Figure 1.

W

1

()

def

= (� a)

�

a[℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

Figure 1: The �ltering wrapper W

1

in box-�.

This
reates a box with a new name a, installing in parallel with it two forwarders

{ one that re
eives messages from the environment on
hannel in and sends them to

the wrapped program, and one that re
eives messages from the wrapped program on

hannel out and sends them to the environment. An arbitrary program P (possibly

mali
ious)
an be wrapped to giveW

1

(P); the design of the
al
ulus and ofW

1

ensures

that no matter how P behaves the wrapped programW

1

(P)
an only intera
t with its

environment on the two
hannels in and out .

The wrapper W

1

ontrols intera
tion between a single
omponent and its environ-

ment { it �lters messages that the
omponent
an send and re
eive, restri
ting it to

a parti
ular interfa
e. A more interesting
ase o

urs when the intera
tion between

untrusted
omponents has to be
ontrolled. In Se
tion 3.3 we introdu
e W

2

, a binary

wrapper that en
apsulates two
omponents P and Q as W

2

(P;Q), allowing ea
h to

intera
t with the environment in a limited way but also allowing information to
ow

from P to Q, but not vi
e versa, along a dire
ted
ommuni
ation
hannel. The box-�

program of Figure 2 is a simpli�ed version of this example.

(� a; b)

�

a[P ℄ j !

a

x:

b

x j b[Q ℄

�

Figure 2: A simpli�ed pipeline wrapper W

2

, en
apsulating P and Q.

Pro
esses P and Q are arbitrary, possibly mali
ious,
omponents. They are en
ap-

sulated in named boxes, with private names a and b, and pla
ed in parallel with a

forwarder pro
ess on
hannel
 from box a to box b. The term

b

x is an output to

hannel
 in box b of value x. The term

a

x:

b

x pre�xes this with an input on
hannel

 from box a; here the �rst x is a formal parameter that binds the se
ond. The ! oper-

ator indi
ates a repli
ated input, so the forwarder persists after use. The boxes restri
t

ommuni
ation of the en
apsulated pro
esses and ensure that P and Q
annot inter-

a
t with ea
h other dire
tly; the private names ensure that they
annot intera
t with

their environment in any other way. This simpli�ed forwarder sends only unordered

asyn
hronous messages; our main example, the wrapper F of Se
tion 3.4, provides

3

FIFO
ommuni
ation on an ordered pipeline (this is related to the NRL pump [23℄, as

dis
ussed in later).

Intuitively, the wrapper W

2

enfor
es an information
ow poli
y that prevents Q

from leaking se
rets to P . When one attempts to make su
h properties pre
ise, how-

ever, there are many
hoi
es. A body of model-theoreti
 work on non-interferen
e

uses deli
ate extensional properties of the tra
e sets of systems. In our programming

language setting a more intensional approa
h allows what we believe to be
learer state-

ments. We start with a labelled transition semanti
s (de�ned in x2.3) that spe
i�es the

input/output behaviour of programs and extend it to represent and propagate
ausal

dependen
ies expli
itly. In terms of this, one
an state the desired property as `no

visible a
tion of P is
ausally dependent on any a
tion of Q'. The
ausal semanti
s

and property are de�ned in Se
tion 4.

Verifying su
h a
ausal
ow property dire
tly
an be laborious, requiring a
har-

a
terisation of the state spa
e of a wrapper
ontaining arbitrary
omponents. We

therefore introdu
e a type system that stati
ally
aptures
ausal
ows. Sin
e
ompo-

nents are often provided as obje
t
ode, whi
h is impra
ti
al for the user to type
he
k,

our type system must admit programs with badly-typed sub
omponents.

The
ausal type system, given in Se
tion 5, allows us to prove information
ow

properties of box-� programs. For the example of Figure 2, to stati
ally allow the

ow from a to b but disallow the
onverse we
an asso
iate the
omponents with

prin
ipals p and q, then take a to be a box name whose
ontents may be a�e
ted by

p, written a :box

fpg

, b to be a box name whose
ontents may be a�e
ted by p or q,

written b :box

fp;qg

, and
 to be a
hannel,
arrying values of a top type >, whi
h

an be a�e
ted only by p, so
 :
han

fpg

>. The fragment is then typable, whereas the

onverse forwarder

b

x:

a

x is not. The type system also deals with tra
king
auses

through
omputation within a wrapper, in
luding
ommuni
ation of
hannel names,

and with intera
tion between a wrapper and badly-typed
omponents. All boxes are

assumed to
ontain untyped pro
esses; wrapper
ode is stati
ally typed; run-time type

he
king is required only when re
eiving from a
omponent.

Further dis
ussion of related work is given in Se
tion 6; Se
tion 7
on
ludes with

future work. The appendi
es
ontain outline proofs of the results; full details
an be

found in the te
hni
al reports [34, 36℄. This paper is an extended version of [35, 37℄.

2 A Boxed � Cal
ulus

The language { known as the box-�
al
ulus { that we use for studying en
apsulation

properties must allow intera
ting
omponents to be
omposed. The
omponents will

typi
ally be exe
uting
on
urrently, introdu
ing nondeterminism. It is therefore natural

to base the language on a pro
ess
al
ulus. The box-�
al
ulus lies in a large design

spa
e of distributed
al
uli that build on the �-
al
ulus of Milner, Parrow and Walker

[26℄, in
luding among others the related
al
uli [2, 8, 11, 30, 32, 38, 40℄. A brief overview

of the design spa
e
an be found in [33℄; here we highlight the main design
hoi
es for

box-�.

The
al
ulus is based on asyn
hronous message passing, with
omponents intera
t-

ing only by the ex
hange of unordered asyn
hronous messages. Box-� has an asyn-

hronous �-
al
ulus as a sub
al
ulus { we build on a large body of work studying su
h

al
uli, notably [19, 6℄. They are known to be very expressive, supporting many pro-

gramming idioms in
luding fun
tions and obje
ts, and are Turing-
omplete; a box-�

pro
ess may therefore perform arbitrary internal
omputation. The
hoi
e of asyn-

4

hronous
ommuni
ation is important as it allows two
omponents to intera
t without

reating
ausal
onne
tions in both dire
tions between them.

Box-� requires fa
ilities for
onstraining
ommuni
ation { in standard �-
al
uli, if

one pro
ess
an send a message to another then the only way to prevent information

owing in the reverse dire
tion is to impose a type system on
omponents, whi
h

(as observed above) is not appropriate here. We therefore add a boxing primitive {

boxes may be nested, giving hierar
hi
al prote
tion domains;
ommuni
ation a
ross

box boundaries is stri
tly limited. Underlying the
al
ulus design is the prin
iple that

ea
h box should be able to
ontrol all intera
tions of its
hildren, both with the outside

world and with ea
h other [40℄. Boxes
an be viewed as prote
tion domains, akin to

operating system-enfor
ed address spa
es. All other
ommuni
ation, in parti
ular that

between two sibling boxes, must be mediated by
ode running in the parent. This
ode

an enfor
e an arbitrary se
urity poli
y, even supporting dynami
ally-
hanging poli
ies

and interfa
es (in
ontrast to stati
 restri
tion or blo
king operators [7, 41℄).

Turning to the values that may be
ommuni
ated, it is
onvenient to allow arbitrary

tuples of names (or other tuples). Note that we do not allow
ommuni
ation of pro
ess

terms. Moreover, no primitives for movement of boxes are provided, in
ontrast to most

work
ited above. The
al
ulus is therefore entirely �rst order, whi
h is important for

the tra
table theory of behaviour (the labelled transition semanti
s) that we require to

state and prove se
urity properties. The
al
ulus is also untyped { we wish to
onsider

the wrapping of ill-understood, probably buggy and possibly mali
ious programs.

2.1 Syntax

The syntax of the
al
ulus is as follows:

Names We take an in�nite set N of names, ranged over by a; b;
 et
. (ex
ept

i; j; k; o; p; u; v). Both boxes and
ommuni
ation
hannels are named; names also play

the role of variables, as in the �-
al
ulus.

Values and Patterns Pro
esses will intera
t by
ommuni
ating values whi
h are

de
onstru
ted by pattern-mat
hing by the re
eiver. Values u; v
an be names or tuples,

with patterns p
orrespondingly tuple-stru
tured.

u; v ::= x name

h

v

1

:: v

k

i

tuple (k � 0)

p ::= wild
ard

x name pattern

(

p

1

:: p

k

)

tuple pattern

(k � 0, no repeated names)

Pro
esses The main synta
ti

ategory is that of pro
esses, ranged over by P;Q. We

introdu
e the primitives in three groups.

Boxes A box n[P ℄ has a name n, it
an
ontain an arbitrary pro
ess P . Box names are

not ne
essarily unique { the pro
ess n[0℄ j n[0℄
onsists of two distin
t boxes named n,

5

both
ontaining an empty pro
ess, in parallel.

P ::= n[P ℄ box named n
ontaining P

P j P

0

P and P

0

in parallel

0 the nil pro
ess

: : :

Communi
ation The standard asyn
hronous �-
al
ulus
ommuni
ation primitives are

xv, indi
ating an output of value v on the
hannel named x, and xp:P , a pro
ess that

will re
eive a value output on
hannel x, binding it to p in P . Here we re�ne these with

a tag indi
ating the dire
tion of the
ommuni
ation in the box hierar
hy. An input tag

�
an be either ?, for input within a box, ", for input from the parent box, or a name

n, for input from a sub-box named n. An output tag o
an be any of these, similarly.

For te
hni
al reasons we must also allow an output tag to be ", indi
ating an output

re
eived from the parent that has not yet intera
ted with an input, or n, indi
ating an

output re
eived from
hild n that has not yet intera
ted. The
ommuni
ation primitives

are then

P ::= : : :

x

o

v output v on
hannel x to o

x

�

p:P input on
hannel x from �

!x

�

p:P repli
ated input

: : :

The repli
ated input !x

�

p:P behaves essentially as in�nitely many
opies of x

�

p:P

in parallel. This gives
omputational power, allowing e.g. re
ursion to be en
oded

simply, while keeping the theory simple. In x

�

p:P and !x

�

p:P the names o

urring in

the pattern p bind in P . Empty patterns and tuples will often be elided.

New name
reation Both box and
hannel names
an be
reated fresh, with the stan-

dard �-
al
ulus (� x)P operator (also known as restri
tion). This de
lares any free

instan
es of x within P to be instan
es of a globally fresh name.

P ::= : : :

(� x)P new name
reation

In (� x)P the x binds in P . We work up to alpha
onversion of bound names through-

out. This means, for example, that (� y)x

"

y and (� z)x

"

z denote the same mathemat-

i
al obje
t. We write the free name fun
tion, de�ned in the obvious way for values,

tags and pro
esses, as fn(), so fn((� y)x

"

y) = fxg. Figure 3 summarizes the syntax of

box-�.

2.2 Redu
tion Semanti
s

The simplest semanti
 de�nition of the
al
ulus is a redu
tion semanti
s, a one-step

redu
tion relation P ! P

0

indi
ating that P
an perform one step of internal
ompu-

tation to be
ome P

0

. We �rst de�ne the
omplement � of a tag � in the obvious way,

with ? = ? and � = �. We de�ne a partial fun
tion f = g, taking a pattern and a value

and giving, where it is de�ned, a partial fun
tion from names to values.

f

v

= g = fg

f

v

=

x

g = fx 7! vg

f

h

v

1

:: v

k

0

i

=

(

p

1

:: p

k

)

g = f

v

1

=

p

1

g [: : : [f

v

k

=

p

k

g if k = k

0

unde�ned, otherwise

6

u; v ::= x name p ::= wild
ard

h

v

1

:: v

k

i

tuple x name pattern

(

p

1

:: p

k

)

tuple pattern

P ::= n[P ℄ box named n
ontaining P

P j P

0

P and P

0

in parallel

0 the nil pro
ess

x

o

v output v on
hannel x to o

x

�

p:P input on
hannel x from �

!x

�

p:P repli
ated input

(� x)P new name
reation

Figure 3: Box-� syntax.

The natural de�nition of the appli
ation of a substitution � (from names to values)

to a pro
ess term P , written �P , is also a partial operation, as the syntax does not

allow arbitrary values in all the pla
es where free names
an o

ur. We write f

v

=

p

gP

for the result of applying the substitution f

v

=

p

g to P . This may be unde�ned either

be
ause f

v

=

p

g is unde�ned, or be
ause f

v

=

p

g is a substitution but the appli
ation of that

substitution to P is unde�ned. For example, f

h

z z

i

=

x

gx

?

hi

is not de�ned as

h

z z

i

?

hi

is not

in the syntax. Note that the result f

y

=

x

gP of applying a name-for-name substitution

is always de�ned.

This de�nition of substitution leads to a lightweight notion of runtime error. A

more
onventional notion of runtime error would give errors only when a tuple is used

as a name, e.g. for output. The substitution-based notion is for
ed by our
hoi
e of

syntax, whi
h disallows values in various pla
es where names may appear. In general

it will report errors sooner than the
onventional notion.

The de�nition of redu
tion involves an auxiliary stru
tural
ongruen
e �, de�ned

as the least
ongruen
e relation su
h that the axioms of Figure 4 hold. This allows the

parts of a redex (an instan
e of the left-hand-side of one of the axioms in Figure 5) to

be brought synta
ti
ally adja
ent.

P j 0 � P

P j Q � Q j P

(P j Q) j R � P j (Q j R)

(� x)(� y)P � (� y)(� x)P

(� x)(P j Q) � P j (� x)Q x 62 fn(P)

(� x)n[P ℄ � n[(� x)P ℄ x 6= n

Figure 4: Stru
tural
ongruen
e relation.

The redu
tion relation is now the least relation over pro
esses satisfying the axioms

and rules of Figure 5. The (Red Comm) and (Red Repl) axioms are subje
t to the

ondition that f

v

=

p

gP is well-de�ned. The (Red Up) axiom allows an output to the

parent of a box to
ross the en
losing box boundary. Similarly, the (Red Down) axiom

allows an output to a
hild box n to
ross the boundary of n. The (Red Comm) axiom

then allows syn
hronisation between a
omplementary output and input within the

same box. The (Red Repl) axiom is similar, but preserves the repli
ated input in the

resulting state.

7

n[x

"

v j Q℄! x

n

v j n[Q℄ (Red Up)

x

n

v j n[Q℄! n[x

"

v j Q℄ (Red Down)

x

�

v j x

�

p:P ! f

v

=

p

gP (Red Comm)

x

�

v j !x

�

p:P ! !x

�

p:P j f

v

=

p

gP (Red Repl)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (� x)P ! (� x)Q (Red Res)

P ! Q) n[P ℄! n[Q℄ (Red Box)

P � P

0

! Q

0

� Q) P ! Q (Red Stru
t)

Figure 5: Box-� redu
tion semanti
s.

Communi
ations a
ross box boundaries take two redu
tion steps, as in the following

upwards and downwards
ommuni
ations.

n[x

"

v℄ j x

n

p:P ! n[0℄ j x

n

v j x

n

p:P

! n[0℄ j f

v

=

p

gP

x

n

v j n[x

"

p:P ℄ ! n[x

"

v j x

"

p:P ℄

! n[f

v

=

p

gP ℄

This removes the need for 3-way syn
hronisations between a box, an output and an

input (as in [40℄), simplifying both the semanti
s and the implementation model.

2.3 Labelled Transition Semanti
s

The redu
tion semanti
s de�nes only the internal
omputation of pro
esses. The state-

ments of our se
urity properties must involve the intera
tions of pro
esses with their

environments, requiring more stru
ture: a labelled transition relation
hara
terising the

potential inputs and outputs of a pro
ess. We give a labelled semanti
s for box-� in an

expli
itly-indexed early style, de�ned indu
tively on pro
ess stru
ture by a stru
tured

operational semanti
s. The reader unfamiliar with pro
ess
al
uli may wish to skim to

the start of Se
tion 3 on a �rst reading.

The labels are

` ::= � internal a
tion

x

o

v output a
tion

x

v input a
tion

where o is any output tag and
 ranges over tags ?, n, " and n. The labelled transitions

an be divided into those involved in moving messages a
ross box boundaries and those

involved in
ommuni
ations between outputs and inputs. The movement labels are

x

n

v (sending to
hild n)

x

n

v (box n re
eiving from its parent)

x

"

v (sending to the parent)

8

We say mv(o) i� o is of the form n or ". The
ommuni
ation labels are

x

?

v (lo
al output)

x

?

v (lo
al input)

x

n

v (output re
eived from
hild n)

x

n

v (input a message re
eived from
hild n)

x

"

v (output re
eived from parent)

x

"

v (input a message re
eived from parent)

Labels syn
hronise in the pairs x

v and x

v. The labelled transition relation has the

form

A ` P

`

�! Q

where A is a �nite set of names and fn(P) � A; it should be read as `in a state where

the names A may be known to P and its environment, pro
ess P
an do ` to be
ome

Q'. The relation is de�ned as the smallest relation satisfying the rules of Figure 6. We

write A; x for A [fxg where x is assumed not to be in A, and A; p for the union of A

and the names o

urring in the pattern p, where these are assumed disjoint.

The labelled semanti
s is similar to a standard � semanti
s, but must also deal with

boxes and with redu
tions su
h as

((� x)
x

n

z) j n[0℄ ! (� x)n[
x

"

z℄

in whi
h a new-bound name enters a box boundary.

In more detail, for the sub
al
ulus without new-binding the labelled transition rules

are straightforward | instan
es of the redu
tion rule (Red Up)
orrespond to uses of

(Box-1), (Out), and (Par); instan
es of (Red Down)
orrespond to uses of (Comm),

(Out), and (Box-2); instan
es of (Red Comm)
orrespond to uses of (Comm), (Out),

and (In). The derivations of the
orresponding � -transitions
an be found in the proof of

Lemma 24. The addition of new-binding introdu
es several subtleties, some inherited

from the �-
al
ulus and some related to s
ope extrusion and intrusion a
ross box

boundaries. We dis
uss the latter brie
y.

The (Red Down) rule involves syn
hronisation on the box name n but not on

the
hannel name x | there are redu
tions su
h as that above with new-bound names

entering box boundaries. To
orre
tly mat
h this with a � -transition the side-
ondition

for (Res-2) for labels with output tag n requires the bound name to o

ur either in

hannel or value position, and the (Comm) rule reintrodu
es the x binder on the right

hand side.

Similarly, the (Red Up) rule allows new-bound names in
hannel position to exit a

box boundary, for example in

n[(� x)x

"

z℄ ! (� x)(x

n

z j n[0℄)

The (Res-2)
ondition for output tag " again requires the bound name to o

ur either

in
hannel or value position; here the (Box-1) rule reintrodu
es the x binder on the

right hand side.

Redu
tions generated by (Red Comm) involve syn
hronisation both on the tags and

on the
hannel name. The (Res-2)
ondition for output tags ?, " and n is analogous to

the standard �-
al
ulus (Open) rule; requiring the bound name to o

ur in the value

but not in the tag or
hannel. The (Comm) rule for these output tags is analogous

to the standard � rule | in parti
ular, here it is guaranteed that x 2 A. The two

semanti
s
oin
ide in the following sense.

9

A ` x

o

v

x

o

v

�! 0

(Out)

A ` x

�

p:P

x

�

v

�! f

v

=

p

gP

(
) (In)

A ` P

`

�! P

0

A ` P j Q

`

�! P

0

j Q

(Par)

A ` !x

�

p:P

x

�

v

�! !x

�

p:P j f

v

=

p

gP

(
) (Repl)

A ` P

x

v

�! P

0

A ` Q

x

v

�! Q

0

A ` P j Q

�

�! (� fn(x; v)�A)(P

0

j Q

0

)

(Comm)

A ` P

x

"

v

�! P

0

A ` n[P ℄

�

�! (� fn(x; v) �A)(x

n

v j n[P

0

℄)

(Box-1)

A ` n[P ℄

x

n

v

�! n[x

"

v j P ℄

(Box-2)

A ` P

�

�! P

0

A ` n[P ℄

�

�! n[P

0

℄

(Box-3)

A; x ` P

`

�! P

0

A ` (� x)P

`

�! (� x)P

0

(a) (Res-1)

A; x ` P

y

o

v

�! P

0

A ` (� x)P

y

o

v

�! P

0

(b) (Res-2)

A ` P

`

�! P

0

P

0

� P

00

A ` P

`

�! P

00

(Stru
t)

(a) The (Res-1) rule is subje
t to x 62 fn(`). (b) The (Res-2) rule is subje
t to x 2

fn(v) � fn(y; o), if o is ?, " or n, and to x 2 fn(y; v) � fn(o) otherwise. (
) In the (In)

and (Repl) axioms there is a side
ondition that f

v

=

p

gP is well-de�ned. In all rules with

on
lusion of the form A ` P

`

�! Q there is an impli
it side
ondition fn(P) � A.

Symmetri
 versions of (Par) and (Comm) are elided.

Figure 6: Box-� Labelled Transition Semanti
s

10

Theorem 1 If fn(P) � A then A ` P

�

�! Q i� P ! Q.

This give
on�den
e that the labelled semanti
s
arries enough information. The proof

is somewhat deli
ate; it is sket
hed in Appendix A and given in detail in [34℄.

Some auxiliary notation is useful. For a sequen
e of labels `

1

: : : `

k

we write

A ` P

1

`

1

�! : : :

`

k

�! P

k+1

to mean 9P

2

; : : : ; P

k

: 8i 2 1::k : A

i

` P

i

`

i

�! P

i+1

, where A

i

= A [

S

j21::i

fn(`

j

). If

` 6= � we write A ` P

^

`

=) P

0

for A ` P

�

�!

�

`

�!

�

�!

�

P

0

; if ` = � then A ` P

^

`

=) P

0

is de�ned as A ` P

�

�!

�

P

0

, whi
h we also write as A ` P =) P

0

.

3 Wrappers and Components in Box-�

This se
tion gives four example wrappers. The �rst wrapper, W

1

, en
apsulates a

single
omponent, restri
ting its intera
tions with the outside world to
ommuni
ations

obeying a
ertain proto
ol. The se
ond, L, is similar, but also writes a log of all su
h

ommuni
ations. The third wrapper,W

2

, en
apsulates two
omponents, allowing ea
h

to intera
t with the outside world in a limited way but also allowing information to

ow from the �rst to the se
ond (but not vi
e versa) along an unordered pipeline. The

fourth and most
omplex wrapper, F , is similar to W

2

, but implements an ordered

pipeline between the
omponents.

Wrappers are designed in the
ontext of some �xed proto
ols for intera
tion between

omponents and their environment, intera
tion among
omponents, and additional

intera
tion between the environment and the wrapper (for logging or
ontrol). These

proto
ols
an be designed so that wrappers
an be nested, allowing a
omplex se
urity

poli
y to be
onstru
ted from o�-the-shelf wrappers. The example wrappers below all

assume rather simple �xed proto
ols. As a trivial example, one
an
ompose W

1

with

itself, with

(W

1

ÆW

1

) ()

def

= W

1

(W

1

())

as its internal and external interfa
es
oin
ide. For more interesting
omposition, one

would have to generalise to arbitrary sets of
hannels instead of in and out , and allow

n-ary wrappers.

3.1 W

1

: A Simple Unary Filtering Wrapper

To demonstrate the use of box-� we give the de�nition of a wrapper that restri
ts the

interfa
e for user programs. In most operating systems, programs installed and run

by a user enjoy the same a

ess rights as the user, so if the user is allowed to open

a so
ket and send data out on the network then so
an any
omponent. We idealize

this s
enario with the
on�guration below { an idealized single-user OS in whi
h user

Ali
e is exe
uting a program P . Here the box around P stands for the user prote
tion

domain enfor
ed by the operating system.

ali
e[P ℄ j

!

!

!:::in

ali
e

x::: j OS write on Ali
e's in port

! out

ali
e

x::: j OS read from Ali
e's out port

!net

ali
e

x::: OS read from Ali
e's net port

11

The OS provides three
hannels in; out and net, to respe
tively allow the user's program

to read from and write to the terminal and to send data out on a network
onne
tion.

The program P is exe
uting within a box and so intera
ts with the OS using the " tag

{ for example P = in

"

x:out

"

h

xx

i

re
eives a value from the terminal and then sends a

pair of
opies of the value ba
k to the terminal.

To exe
ute some untrusted
ode fragment Q, Ali
e may run the
ode in parallel with

her other appli
ations, perhaps as ali
e[P j Q℄. But, this grants too mu
h privilege to

Q. In parti
ular, if Q = ! in

"

x:net

"

x then any terminal input may be redire
ted to the

net, or if Q = !

?

y:(net

"

 j

?

y

�

then Q
an eavesdrop on
ommuni
ations on
hannel

 between other parts of the system in P .

A wrapper is a box-�
ontext whi
h
an enfor
e �ne-grain
ontrol on the behaviour

of Q. Our �rst example is the �ltering wrapper W

1

, whi
h prevents Q from a

essing

the network or from eavesdropping:

W

1

()

def

= (� a)

�

a[℄

j ! in

"

x:in

a

x

j ! out

a

x:out

"

x

�

a

in out

The system be
omes ali
e[P j W

1

(Q)℄. The untrusted
ode is pla
ed in a box with a

fresh name a, so a 62 fn(Q). In parallel with the box are two forwarders for in and out

messages. The �rst, ! in

"

x:in

a

x, is a repli
ated input re
eiving values from the OS and

sending them to a; the se
ond is dual. Only these two pro
esses
an intera
t with a

due to the s
ope of the restri
tion, so even when put in parallel with other
ode the

wrapper guarantees that Q will not be able to send on net.

We show a small redu
tion sequen
e where P = 0 and Q = in

"

x:net

"

x. Here B is

the forwarders ! in

"

x:in

a

x j ! out

a

x:out

"

x.

in

ali
e

y j ali
e[P j W

1

(Q) ℄

� in

ali
e

y j ali
e[(� a)(a[Q℄ j B)℄

! ali
e[in

"

y j(� a)(a[Q℄ j B)℄

� ali
e[(� a)(in

"

y j a[Q℄ j B)℄

! ali
e[(� a)(in

a

y j a[Q℄ j B)℄

! ali
e[(� a)(a[in

"

y jQ℄ j B)℄

! ali
e[(� a)(a[net

"

y ℄ j B)℄

! ali
e[(� a)(net

a

y j a[0 ℄ j B)℄

At the �nal state the output from Q is prevented from leaving the ali
e box dire
tly

as B does not
ontain a forwarder for net. It is prevented from intera
tion with any P

(although here P was empty) by the restri
tion on a.

3.2 L: A Logging Wrapper

Wrappers
an be used for monitoring as well as �ltering; in operating systems auditing

untrusted
omponents is an important part of most se
urity infrastru
tures. The L

wrapper extends W

1

to maintain a log of all
ommuni
ations of a pro
ess, sending

12

opies on a
hannel log to the environment, as follows:

L()

def

= (� a)

�

a[℄

j ! in

"

y:(log

"

y j in

a

y)

j ! out

a

y:(log

"

y j out

"

y)

�

a

in out log

Note that L does not interfere with the operation of the
omponent it en
apsulates;

the logging a
tivity is transparent.

3.3 W

2

: A Pipeline Wrapper

A pipeline wrapper allows a
ontrolled
ow of information between two
omponents.

We give a binary wrapper W

2

that en
apsulates two pro
esses. In an exe
ution of

W

2

(Q

1

; Q

2

) the two wrapped pro
esses Q

i

an intera
t with the environment as before,

on
hannels in

i

and out

i

. In addition, Q

1

an send messages to Q

2

on a
hannel mid .

W

2

(

1

;

2

)

def

= (� a; b)

�

a[

1

℄ j b[

2

℄

j ! in

1

"

y:in

1

a

y

j ! in

2

"

y:in

2

b

y

j ! out

1

a

y:out

1

"

y

j ! out

2

b

y:out

2

"

y

j !mid

a

y:mid

b

y

�

a

mid

in

1

out

1

b

in

2

out

2

As before W

2

is a non-binding
ontext { we assume, wherever we apply it to two

pro
esses Q

1

; Q

2

, that fa; bg \ fn(Q

1

; Q

2

) = ;. For an example of a blo
ked attempt

by the se
ond pro
ess to send a value to the �rst, suppose Q

2

= mid

"

v. We have

W

2

�

Q

1

;mid

"

v

�

= (� a; b)

�

a[Q

1

℄ j b[mid

"

v℄ j R

�

! (� a; b)

�

a[Q

1

℄ j b[0℄ j mid

b

v j R

�

where R is the parallel
omposition of forwarders. The output mid

b

v in the �nal state

annot intera
t further { not with the environment, as b is restri
ted, and not with the

forwarder !mid

a

y:mid

b

y, as a 6= b.

3.4 F : An Ordered Pipeline Wrapper

There is a tension between the strength of
ommuni
ation primitive supported by a

wrapper and the strength of the se
urity property it
an guarantee. The previous

three examples provide only asyn
hronous unordered
ommuni
ation between
ompo-

nents, whi
h would be awkward to use in most real systems. At the other extreme,

syn
hronous
ommuni
ation introdu
es
ausal
ows in both dire
tions (the
ausal
ow

property we state in Se
tion 4.5 would not hold in a syn
hronous
al
ulus, so a more

deli
ate property would be required { perhaps stating that there are only data-less

a
ks from one
omponent to another). There are two intermediate points: one
an

provide asyn
hronous ordered
ommuni
ation, as we do below, or use some form of

13

F(

1

;

2

) = (� a; b)

�

a[

1

℄ j b[

2

℄ j

(� bu� ; full)

�

(� front ; ba
k)

�

(
reate FIFO bu�er) bu�

?

h

front ba
k

i

j

(
onne
t from

a

to bu�er) ! from

a

(

v r

)

:(� r

0

)(front

?

h

v r

0

i

j r

0

?

:r

a

) j

(
onne
t bu�er to to

b

) ! ba
k

?

(

v r

)

:(� r

0

)(to

b

h

v r

0

i

j r

0

b

:r

?

)

�

j

(bu�er
ode) ! bu�

?

(

front ba
k

)

:front

?

(

v r

)

:(r

?

j (� ba
k

0

)(bu�

?

h

front ba
k

0

i

j full

?

h

ba
k

0

ba
k v

i

)) j

! full

?

(

ba
k

0

ba
k v

)

:(� r)(ba
k

?

h

v r

i

j r

?

:ba
k

0

?

(

v

0

r

0

)

:(r

0

?

j full

?

h

ba
k

0

ba
k v

0

i

))

�

j

(I/O forwarders) ! in

1

"

x:in

1

a

x j ! out

1

a

x:out

1

"

x j

! in

2

"

x:in

2

b

x j ! out

2

b

x:out

2

b

x

�

in

1

out

1

in

2

out

2

(r

0

)

(r) to

a

from

FIFO bu�er

b

Figure 7: FIFO Pipeline Wrapper F .

weak a
knowledgments, as in the NRL pump [23℄. The former still guarantees an ab-

sen
e of information
ow (albeit at the
ost of maintaining an unbounded bu�er) while

the latter limits bandwidth of
overt
hannels. In both
ases, it is essential to be able

to guarantee that the implementation of the
ommuni
ation primitives does a
tually

have the desired
ow property; this is what we set out to do here.

In Figure 7 we give a wrapper F that takes two
omponents and allows the �rst

to
ommuni
ate with the se
ond by a �rst-in, �rst-out bu�er. The wrapper has been

written with
are to avoid any information leak from the se
ond
omponent to the

�rst. For simpli
ity both
omponents have simple unordered input and output ports

in

i

and out

i

to the environment; it would be routine to make these FIFO also.

The interfa
e to the wrapper is as follows. To write to the bu�er a produ
er sends a

value together with an a
knowledgment
hannel to the wrapper (using a standard asyn-

hronous �-
al
ulus idiom). The wrapper inserts the value in a queue and a
knowledges

re
eption. For value v the produ
er may
ontain

(� a
k)(from

"

h

v a
k

i

j a
k

"

:::);

sending the value and a new a
knowledgement
hannel a
k to the wrapper and, in

parallel, waiting for a reply before pro
eeding with its
omputation. On the re
eiver

14

side, we may have a pro
ess that waits for a pair of a value and an a
k
hannel:

to

"

(

z r

)

:(r

"

j :::)

The name of the re
eiving
hannel is to;
hannel r is used to send the a
knowledgement

ba
k to the wrapper. Thus a
on�guration where B stands for the body of the wrapper

ould be:

(� a; b)

�

a[(� a
k)(from

"

h

v a
k

i

j a
k

"

:0) ℄ j

b[to

"

(

z r

)

:r

"

℄ j

B

�

The implementation of the wrapper is somewhat tri
ky, as we have to be
areful not

to introdu
e
overt
hannels between the
omponents. Within the wrapper there is a

repli
ated input on bu� that
reates a new empty FIFO bu�er and a repli
ated input

on full that
reates a new bu�er
ell
ontaining a value. The key point is to ensure that

the a
knowledgment to the �rst
omponent not be dependent on any a
tion performed

by the se
ond
omponent. The glue pro
ess that
onne
ts the from

a

hannel to the

bu�er has a subpro
ess, r

0

?

:r

a

, to send the a
k to a. This small pro
ess itself expe
ts

an a
k from the head of the bu�er saying that the message was inserted in the queue.

The bu�er
ode front

?

(

v r

)

:(r

?

: : : a
ks on r immediately, in parallel with pla
ing the

new message in a full bu�er
ell at the head of the queue. The asyn
hrony here is

essential.

4 Se
urity Properties

So far we have been vague about the statement of the properties that we expe
t wrap-

pers to enfor
e. ForW

1

it may be
lear from examination of the
ode and the semanti
s

that the wrapper is satisfa
tory, but it is un
lear exa
tly what properties are guaran-

teed. For F the situation is mu
h worse { even this simple wrapper is
omplex enough

that a rigorous statement and proof of its se
urity properties is essential; the user

should not be required to examine the
ode of a wrapper in order to understand the

se
urity that it provides. We now turn to the task of formalizing these properties and

developing the tools needed to prove them.

4.1 Purity

The most basi
 questions that one would expe
t a theory of wrappers to deal with

are whether a
omponent is well-behaved and, for
ertain wrappers, whether wrap-

ping an ill-behaved
omponent
reates a well-behaved
omponent. Statements of su
h

properties must be with respe
t to a parti
ular
hoi
e of proto
ol for legitimate wrap-

per/
omponent intera
tion. For example, for the unary wrappers W

1

and L a well-

behaved
omponent is expe
ted to intera
t only on in and out
hannels with its parent.

This
an be easily formalised using our labelled transition semanti
s: we say an inter-

fa
e M is a set of pairs m of a (
o)name and a tag, e.g. M = fin

"

; out

"

g.

De�nition 1 A pro
ess P is well-behaved for an interfa
e M i� whenever A ` P

l

1

::l

k

�!

Q then for ea
h j 2 1::k we have l

j

= � or 9m 2M; v : l

j

= mv.

Re
alling the examples of Se
tion 3.1,

P = in

"

x:out

"

h

xx

i

Q = ! in

"

x:net

"

x

15

P is well-behaved for interfa
e fin

"

; out

"

g (it has transitions only with labels of the

forms � , in

"

v or out

"

v) but Q is not.

Irrespe
tive of the behaviour of a
omponentR, wrapperW

1

enfor
es good behavior,

thus W

1

(R) does obey the proto
ol { again this
an be stated
learly using the LTS:

Proposition 2 For any program R with a 62 fn(R), W

1

(R) is well-behaved for fin

"

;

out

"

g.

We say a unary wrapper with this property is pure. The proof is via an expli
it

hara
terisation of the states rea
hable by labelled transitions of W

1

(R); it
an be

found in Appendix B.

The logging wrapper L is not pure in this sense, but a wrapped program L(R)
an

again intera
t only in limited ways.

Proposition 3 For any program R with a 62 fn(R), L(R) is well-behaved for fin

"

,

out

"

, log

"

g.

For an analogous notion of purity for binary wrappers with interfa
es su
h as W

2

, say

a binary wrapper C is pure i� for any programs R

1

; R

2

, (satisfying the appropriate free

name
ondition, i.e. that with fa; bg \ fn(R

1

; R

2

) = ;), C(R

1

; R

2

) is well-behaved for

fin

"

1

; out

1

"

; in

"

2

; out

2

"

g.

Proposition 4 Binary wrappers W

2

and F are pure.

Propositions 3 and 4
an be proved either via expli
it
hara
terisations similar to that

of Proposition 2 or using the type system developed later.

4.2 Honesty

The properties of wrappers stated in the previous subse
tion are weak as they hardly

onstrain the behaviour of the wrapper. For example, the useless unary wrapper

C()

def

= 0

is trivially pure as it inhibits all intera
tions. In [34℄ we introdu
ed the
lass of honest

wrappers that are guaranteed to forward legitimate messages. An initial attempt at a

de�nition of honesty might be to take W

1

as a spe
i�
ation, de�ning a unary wrapper

C to be honest i� for any program P the pro
esses C(P) and W

1

(P) are operationally

equivalent. This is unsatisfa
tory { it rules out wrappers su
h as L, and it does not give

a very
lear statement of the properties that may be assumed of an honest wrapper.

A better attempt might be to say that a unary wrapper C is honest i� for any

well-behaved P the pro
esses C(P) and P are operationally equivalent. This would be

unsatisfa
tory in two ways. Firstly, some intuitively sound wrappers have additional

intera
tions with the environment { e.g. the logging outputs of L { and so would

not be
onsidered honest by this de�nition. More seriously, this de�nition would not

onstrain the behaviour of wrappers for non-well-behaved P at all { if a
omponent P

attempted, in error, a single illi
it
ommuni
ation then C(P) might behave arbitrarily.

To address these points we gave an expli
it de�nition of honesty, in the style of

weak asyn
hronous bisimulation [3℄, for unary wrappers su
h as W

1

and L.

16

De�nition 2 (Honesty) Consider a family of relations R indexed by �nite sets of

names su
h that ea
h R

A

is a relation over fP j fn(P) � A g. Say R is an h-

bisimulation if, whenever C R

A

Q then:

1. if A ` C

`

�! C

0

for ` = out

"

v; � then A ` Q

^

`

=) Q

0

^ C

0

R

A[fn(`)

Q

0

2. if A ` C

in

"

v

�! C

0

then either A ` Q

in

"

v

=) Q

0

and C

0

R

A[fn(in;v)

Q

0

or A ` Q =) Q

0

and C

0

R

A[fn(in;v)

Q

0

j in

"

v

3. if A ` C

`

�! C

0

for any other label then C

0

R

A[fn(`)

Q

together with symmetri
 versions of
lauses 1 and 2. Say a unary wrapper C is honest

if for any program P (satisfying the appropriate free name
ondition) and any A �

fn(C(P)) there is an h-bisimulation R with C(P) R

A

P .

Loosely,
lauses 1, 2 and the symmetri
 versions ensure that legitimate
ommuni-

ations and internal redu
tions must be weakly mat
hed. Clause 3 ensures that if the

wrapper performs some additional
ommuni
ation then this does not a�e
t the state

as seen by the wrapped pro
ess.

Proposition 5 The unary wrapper W

1

is honest.

We
onje
ture that L is also honest. We give some examples of dishonest wrappers.

Take

C()

def

= (� a)a[℄

This is not honest { a transition A ` P

out

"

v

�! P

0

annot be mat
hed by C(P), violating

the symmetri
 version of
lause 1. Now
onsider

C()

def

=

This wrapper is also dishonest as C(P)
an perform a
tions not in the proto
ol that

essentially a�e
t the state of P . For example, take P = x

?

y:out

"

hi

. Suppose C(P) R

A

P

for an h-bisimulation R. We have A ` C(P)

x

?

hi

�! out

"

hi

so by
lause 3 out

"

hi

R

A

P , but

then
lause 1
annot hold { the left hand side
an perform an out

"

hi

transition that

annot be mat
hed be the right hand side.

A de�nition of honesty for binary wrappers must take into a

ount the legitimate

intera
tions between the two
omponents. In [34℄ we gave a tentative de�nition, in

terms of binary h-bisimulations, but it was rather
omplex { dealing with the
ombi-

nation of theW

2

proto
ol and the asyn
hrony of the
al
ulus. We regard it as an open

problem to give satisfa
tory de�nitions of honesty for
omplex wrappers and of an op-

erational equivalen
e �,
on
luding this subse
tion with some desirable relationships

between them.

The proto
ol for
ommuni
ation between a
omponent and a unary wrapper is

designed so that wrappers may be nested. We
onje
ture that the
omposition of any

honest unary wrappers is honest.

Conje
ture 6 If C

1

and C

2

are honest unary wrappers then C

1

Æ C

2

is honest.

17

Analogous results for non-unary wrappers would require wrappers with more
omplex

interfa
es so that the input, output and mid
hannels
ould be
onne
ted
orre
tly.

A desirable property of a pure wrapper is that it should not a�e
t the behaviour of

any well-behaved
omponent | one might expe
t for any pure and honest C and well-

behaved P that P � C(P) for any reasonable operational equivalen
e �. Unfortunately

this does not hold for the obvious naive adaptation of weak asyn
hronous bisimulation

to box-�, even for W

1

, as the wrapper
an make input transitions that
annot be

mat
hed { a more re�ned equivalen
e is required.

A simpler property would be that multiple wrappings have no e�e
t. We would

expe
t that W

1

is idempotent, i.e. that W

1

(W

1

(P)) � W

1

(P), for any reasonable

equivalen
e �.

4.3 Unidire
tional Information Flow: First Attempts

Honesty and Purity are desirable properties, but they do not address our
entral prob-

lem: that of understanding in what sense a multi-hole wrapper su
h asW

2

or F allows

�ne-grain
ontrol over the information
ows between
omponents { enfor
ing the uni-

dire
tional
ow property that the se
ond wrapped
omponent should not be able to

a�e
t the �rst. By examining the
ode for W

2

it is intuitively
lear that information

an not
ow from Q to P within W

2

(P;Q). For F it is mu
h less obvious, however,

and when one
omes to make the intuition pre
ise it be
omes far from
lear exa
tly

what property is desired. Moreover, the user should not have to examine the wrapper

ode in order to get suÆ
ient guarantees about its behaviour.

In this subse
tion we de�ne two information
ow properties expressed using the

LTS: new name dire
tionality and permutation. Neither is satisfa
tory; we argue that

a more intensional semanti
s is required. The following two subse
tions develop a

oloured labelled transition semanti
s and state a
ausal
ow property in terms of it.

Together, these de�nitions illustrate the wide range of pre
ise properties whi
h the

intuitive statement might be thought to mean. We hope to provoke dis
ussion of

exa
tly what guarantees should be desired by users and by
omponent designers.

For simpli
ity, only pure binary wrappers C are
onsidered.

New-name dire
tionality As we are using a
al
ulus with
reation of new names,

we
an test a wrapper by supplying a new name to the se
ond
omponent, on in

2

,

and observing whether it
an ever be output by the �rst
omponent on out

1

. Say C is

dire
tional for new names if whenever

A ` C(P

1

; P

2

)

`

1

�! : : :

`

j

�!

in

2

"

u

�!

`

0

1

�! : : :

`

0

k

�!

out

1

"

u

0

�! P

with x 2 fn(u), but x is new, i.e. x 62 A [fn(`

1

: : : `

j

), and x is not subsequently input

to the �rst
omponent, i.e.

x 62

[

i21::k^`

0

i

=in

1

"

v

fn(v)

then x is not output by the �rst
omponent, i.e. x 62 fn(u

0

). This property does not

prevent all information
ow, however { a variant of W

2

ontaining a reverse-forwarder

that only forwards parti
ular values, su
h as

!mid

a

2

y:if y 2 f0; 1g then mid

a

1

y

ould still satisfy it. (Here 0 and 1 are free names, whi
h must therefore be in A.)

18

Permutation Our se
ond property formalises the intuition that if no observable be-

haviour due to P

1

depends on the behaviour of P

2

then in any tra
e it should be

possible to move the a
tions asso
iated with P

1

before all a
tions asso
iated with P

2

.

Say C has the permutation property if whenever

A ` C(P

1

; P

2

)

`

1

=) : : :

`

k

=) P

with `

i

6= � there exists a permutation � of f1; : : : ; kg su
h that

A ` C(P

1

; P

2

)

`

�(1)

=) : : :

`

�(k)

=) P

and no in

1

or out

1

transition o

urs after any in

2

or out

2

transition in `

�(1)

: : : `

�(k)

.

Permutation ensures that a
tions of P

1

do not depend on inputs of P

2

but it does not

prevent initial intera
tions between the
omponents.

For an example wrapper without this property,
onsider a wrapper C whi
h for
es

inputs of P

1

to be
ausally dependent on inputs of P

2

.

C(

1

;

2

)

def

= (� a

1

; a

2

)

�

a

1

[

1

℄ j a

2

[

2

℄

j ! in

2

"

y:

�

in

2

a

2

y j ! in

1

"

y:in

1

a

1

y

�

j ! out

1

a

1

y:out

1

"

y

j ! out

2

a

2

y:out

2

"

y

j !mid

a

1

y:mid

a

2

y

�

Here the in

1

messages are not forwarded until at least one in

2

input is re
eived from

the environment. Nonetheless, in some sense there is still no information
ow from the

se
ond
omponent to the �rst.

The new-name dire
tionality and permutation properties are expressed purely in

terms of the externally observable behaviour of C(P;Q) (in fa
t, they are properties of

its tra
e set, a very extensional semanti
s). Note, however, that the intuitive statement

that information does not
ow from Q to P depends on an understanding of the inter-

nal
omputation of P and Q that is not present in the redu
tion or labelled transition

relations (given only that C(P;Q) !

�

R there is no way to asso
iate subterms of R

with an `origin' in C, P or Q). We therefore develop a more intensional semanti
s in

whi
h output and input pro
esses are tagged with sets of
olours. The semanti
s prop-

agates
olours in intera
tion steps, thereby tra
king the
ausal dependen
ies between

intera
tions.

4.4 Colouring the Box-� Cal
ulus

We introdu
e two semanti
s for
apturing the intuitive property that one wrapped

omponent does not
ausally a�e
t another. First, we de�ne a simple
oloured redu
tion

semanti
s for box-� whi
h annotates output pro
esses with sets of
olours that re
ord

their
ausal histories { essentially the sets of prin
ipals that have a�e
ted them in the

past { and the redu
tion semanti
s propagate this
ausal history data. Se
ondly, we

introdu
e a
oloured labelled transition semanti
s, allowing more dire
t statements of

se
urity properties of wrappers that intera
t with their environment. The
oloured

al
ulus is a trade-o� { it
aptures less detailed
ausality information than the non-

interleaving models studied in
on
urren
y theory [45, 5, 9℄ but is mu
h simpler; it

aptures enough information to express interesting se
urity properties.

19

The
oloured syntax. We take a set
ol of
olours or prin
ipals (we use the terms

inter
hangeably) disjoint from N . Let k; p; q range over elements of
ol and C;D;K

range over subsets of
ol. We de�ne a
oloured box-�
al
ulus by annotating all outputs

with sets of
olours:

P ::= C :x

o

v

�

�

x

�

p:P

�

�

!x

�

p:P

�

�

n[P ℄

�

�

0

�

�

P j P

0

�

�

(� x)P

If P is a
oloured term we write jP j for the term of the original syntax obtained by

erasing all annotations. Conversely, for a term P of the original syntax C ÆP denotes

the term with every parti
le
oloured by C. For a
oloured P we write C �P for the

oloured term whi
h is as P but with C unioned to every set of
olours o

urring in it.

We sometimes
onfuse p and the set fpg. Let pn(P) be the set of
olours that o

ur

in P . We write CD for the union C [D.

In the
oloured output C : x

o

v think of C as re
ording the
ausal history of the

output parti
le { C is the set (possibly empty) of prin
ipals p 2 C that have a�e
ted

the parti
le in the past. In an initial state all outputs might typi
ally be
oloured by

singleton sets giving their a
tual prin
ipals, for example
olouring the
ode of wrapper

F and two wrapped
omponents with di�erent
olours w; p; q:

(w ÆF) (p ÆP j q ÆQ)

The
oloured redu
tion semanti
s is obtained by repla
ing the �rst four axioms

of the un
oloured semanti
s by the rules

n[C :x

"

v j Q℄ �! C :x

n

v j n[Q℄ (C Red Up)

C :x

n

v j n[Q℄ �! n[C :x

"

v j Q℄ (C Red Down)

C :x

�

v j x

�

p:P �! C �(f

v

=

p

gP) (C Red Comm)

C :x

�

v j !x

�

p:P �! !x

�

p:P j C �(f

v

=

p

gP) (C Red Repl)

that propagate
olour sets. The
oloured
al
ulus has essentially the same redu
tion

behaviour as the original
al
ulus:

Proposition 7 For any
oloured P we have jP j ! Q i� 9P

0

: P �! P

0

^ jP

0

j = Q.

The proof is by straightforward indu
tion on the derivation of transitions.

The
oloured labelled transitions have labels ` exa
tly as before. The
oloured

labelled transition relation has the form

A ` P

`

�!

C

Q

where A is a �nite set of names and fn(P) � A; it should be read as `in a state where

the names A may be known to P and its environment, pro
ess P
an do `,
oloured

C, to be
ome Q'. Again C re
ords
ausal history, giving all the prin
ipals whi
h have

dire
tly or indire
tly
ontributed to this a
tion. The relation is de�ned as the smallest

relation satisfying the rules in Figure 8. It
oin
ides with the previous LTS and with

the
oloured redu
tion semanti
s in the following senses.

Proposition 8 For any
oloured P we have A ` jP j

`

�! Q i� 9C; P

0

: A ` P

`

�!

C

P

0

^ jP

0

j = Q.

20

A ` C :x

o

v

x

o

v

�!

C

0

(Out)

A ` x

�

p:P

x

�

v

�!

C

C �f

v

=

p

gP

(
) (In)

A ` P

`

�!

C

P

0

A ` P j Q

`

�!

C

P

0

j Q

(Par)

A ` !x

�

p:P

x

�

v

�!

C

!x

�

p:P j C �f

v

=

p

gP

(
) (Repl)

A ` P

x

v

�!

C

P

0

A ` Q

x

v

�!

C

Q

0

A ` P j Q

�

�!

;

(� fn(x; v) �A)(P

0

j Q

0

)

(Comm)

A ` P

x

"

v

�!

C

P

0

A ` n[P ℄

�

�!

;

(� fn(x; v) �A)(C :x

n

v j n[P

0

℄)

(Box-1)

A ` n[P ℄

x

n

v

�!

C

n[C :x

"

v j P ℄

(Box-2)

A ` P

�

�!

C

P

0

A ` n[P ℄

�

�!

C

n[P

0

℄

(Box-3)

A; x ` P

`

�!

C

P

0

A ` (� x)P

`

�!

C

(� x)P

0

(a) (Res-1)

A; x ` P

y

o

v

�!

C

P

0

A ` (� x)P

y

o

v

�!

C

P

0

(b) (Res-2)

A ` P

`

�!

C

P

0

P

0

� P

00

A ` P

`

�!

C

P

00

(Stru
t)

(a) The (Res-1) rule is subje
t to x 62 fn(`). (b) The (Res-2) rule is subje
t to x 2

fn(v) � fn(y; o), if o is ?, " or n, and to x 2 fn(y; v) � fn(o) otherwise. (
) In the (In)

and (Repl) axioms there is a side
ondition that f

v

=

p

gP is well-de�ned. In all rules with

on
lusion of the form A ` P

`

�!

C

Q there is an impli
it side
ondition fn(P) � A.

Symmetri
 versions of (Par) and (Comm) are elided.

Figure 8: Coloured Box-� Labelled Transition Semanti
s

21

The proof is by straightforward indu
tion on the derivation of labelled transitions.

Proposition 9 For
oloured P and Q, if fn(P) � A then A ` P

�

�!

;

Q i� P ! Q.

The proof is a minor adaptation of that of Theorem 1.

4.5 Unidire
tional Flow: The Causal Flow Property

A more
onvin
ing property
an now be stated. Say an instantiation of some binary

wrapperW is an un
oloured pro
essW(P;Q) where P and Q are un
oloured pro
esses

not
ontaining the new-bound names s
oping the holes of W . As before, say W is a

pure binary wrapper if for any instantiation and any transition sequen
e

A ` W(P;Q)

`

1

�! : : :

`

k

�! R

the labels `

j

have the form � , in

i

"

v, or out

i

"

v, for i 2 f1; 2g. (purity simply means

that the wrapper has a �xed interfa
e and thus simpli�es the statement of the
ausal

ow property).

De�nition 3 (Causal
ow property) A pure binary wrapper W has the
ausal
ow

property if for any instantiation W(P;Q) and any
oloured tra
e

A ` ; ÆW(P;Q)

`

1

�!

C

1

: : :

`

k

�!

C

k

;

su
h that all input transitions in

1

"

v and in

2

"

v in `

1

::`

k

are
oloured with prin
ipal sets

fpg and fqg respe
tively, we have `

j

= out

1

"

v implies that q 62 C

j

.

This property forbids any
ausal
ow from an input on in

2

to an output on out

1

.

Di�erent variants of the
ow property, with di�erent
hara
teristi
s,
an also be

stated. For example, to prevent information in the initial state of Q a�e
ting outputs

on out

1

we
ould
onsider
oloured tra
es

A `

�

; ÆW)(p ÆP; q ÆQ)

`

1

�!

C

1

: : :

`

k

�!

C

k

This still allows the Q to
ommuni
ate with P but only on the
ondition that P does

not perform any further output dependent on the
ommuni
ated values. Forbidding

Q a�e
ting P at all (even if there are no inputs or outputs of either
omponent)
an

be done with a slightly more intri
ate
oloured semanti
s. There is no
lear
ut `best'

solution, yet the use of
ausal semanti
s allows su

in
t statement of the alternatives

and eases the
omparison of these di�erent properties.

5 Causality Types

Verifying a
ausal
ow property dire
tly
an be laborious, requiring a
hara
terisa-

tion of the state spa
e of a wrapper
ontaining arbitrary
omponents. We therefore

introdu
e a type system that stati
ally
aptures
ausal
ows; a wrapper
an be shown

to satisfy the
ausal
ow property simply by
he
king that it is well-typed. Often

(though not always) one might start with un
oloured terms;
olours are propagated

into the terms duing labelled transitions. The type system
aptures invariants about

22

how
olours
an propagate { the
ausal
ow property is a
orollary of the subje
t re-

du
tion theorem for the type system. This se
tion introdu
es the type system, gives

its soundness theorems, and applies it to F .

A simple type system for Box-� would have types

T ::=
han T

�

�

box

�

�

hT :: T i

for the types of
hannel names
arrying T , box names, and tuples. We annotate the

�rst two by sets K of prin
ipals and add a type name, of arbitrary names, and >, of

arbitrary values, giving the value types

T ::=
han

K

T

�

�

box

K

�

�

hT :: T i

�

�

name

�

�

>

If x :
han

K

T then x is the name of a
hannel
arrying T ; moreover, in an output

pro
ess C : x

?

v on x the typing rules will require C � K { intuitively, su
h an output

may have been
ausally a�e
ted only by the prin
ipals k 2 K. In an input x

�

p:P on

x the
ontinuation P must therefore be allowed to be a�e
ted by any k 2 K, so any

output within P must be on a
hannel of type
han

K

0

T with K � K

0

.

We are
on
erned with the en
apsulation of possibly badly-typed
omponents, so

must allow a box a[P ℄ in a well-typed term to
ontain an untyped pro
ess P . The type

system
annot be sensitive to the
ausal
ows within su
h a box; it
an only enfor
e

an upper bound on the set of prin
ipals that
an a�e
t any part of the
ontents. If

a :box

K

then a is a box name; the
ontents may have been
ausally a�e
ted only by

k 2 K.

We take type environments � to be �nite partial fun
tions from names to value

types. The type system has two main judgments, � ` v :T for values and � ` P :pro

K

for pro
esses. The typing for pro
esses re
ords just enough information to determine

when pre�xing a pro
ess with an input is legitimate { if P :pro

K

then P
an be

pre�xed by an input on a
hannel x :
han

K

0

hi, to give x

?

:P , i� K

0

� K. Note, however,

that a P :pro

K

may have been a�e
ted by (and so synta
ti
ally
ontain) k 62 K.

To type intera
tions between well-typed wrapper
ode and a badly-typed boxed

omponent some simple subtyping is useful. We take the subtype order T � T

0

as

below, and write

V

fT

i

j i 2 1::k g for the greatest lower bound of T

1

; ::; T

k

, where this

exists.

>

name

hT

1

:: T

k

i

box

K

han

K

T

The
omplete type system is given in Figure 9. It uses judgements ` p :T B �, meaning

pattern p mat
hes values of type T and gives bindings �; � ` v :T , meaning value v

has type T in environment �; and � ` P :pro

K

, meaning pro
ess P is well-formed

in environment � and
an be pre�xed by anything that a�e
ts at most K. We now

explain the key aspe
ts by giving some admissible typing rules.

Basi
 Flow Typing Consider the type environment x :
han

K

hi; y :
han

L

hi and the

redu
tion

C :x

?

j x

?

:D :y

?

! (C [D) :y

?

23

During the redu
tion the output y

?

on y is
ausally a�e
ted by the output on x { the

right-hand pro
ess term (C [D) :y

?

re
ords that the output on y has been (indire
tly)

a�e
ted by all the prin
ipals that had a�e
ted the output on x. For the left pro
ess

to be well-typed we must
learly require C � K and D � L; for the right pro
ess to be

well-typed we need also C � K, to guarantee this the typing rules require K � L. The

relevant admissible rules are below.

� ` x :
han

K

T

� ` v :T

C � K

� ` C :x

?

v : pro

K

� ` x :
han

K

T

�; y :T ` P :pro

K

00

K � K

00

� ` x

?

y:P :pro

K

Now
onsider also y :
han

L

0

hi and the pro
ess

C :x

?

j x

?

:

�

D :y

?

j D

0

:y

0

?

�

Here both the output on y and that on y

0

must be a�e
table by C, so the typing rule

for parallel must take the interse
tion of allowed-
ause sets:

� ` P :pro

K

� ` Q :pro

K

0

� ` P j Q :pro

K\K

0

The examples above involve only
ommuni
ation within a wrapper, with tag ?. Com-

muni
ation between a wrapper and its parent, with tag ", has the same typing rules,

as the parent is presumed well-typed.

Channel Passing Channel passing involves no additional
ompli
ation. Consider the

type environment � = z :
han

K

00

hi, x :
han

K

han

K

00

hi, and the redu
tion

C :x

?

z j x

?

y:D :y

?

! (C [D) :z

?

The left-hand pro
ess is typable using the rules above if C � K for the x output, D � K

00

for the y output, and K � K

00

for the input, using �; y :
han

K

00

hi ` D : y

?

:pro

K

00

.

Together these imply (C [D) � K

00

, so the right-hand pro
ess is well-typed.

Intera
ting with a box (at >) As dis
ussed above, the
ontents of a box may be

badly-typed, yet a wrapper must still be able to intera
t with them. The simplest
ase

is that in whi
h a wrapper sends and re
eives values that it
onsiders to be of type

>; we
onsider more general
ommuni
ation in the next paragraph. The typing rule

for boxes requires only that the prin
ipals pn(P) synta
ti
ally o

urring within the

ontents P of a box are
ontained in the permitted set and that P 's free names are all

de
lared in the type environment.

� ` a :box

K

pn(P) � K

fn(P) � dom(�)

� ` a[P ℄ :pro

K

Consider sending to and re
eiving from a box a :box

K

.

C :x

a

v j a[P ℄ j z

a

y:Q

24

For the output to be well-typed we must insist only that C � K; for the input to be

well-typed Q must be allowed to be a�e
ted by any prin
ipal that might have a�e
ted

the
ontents P .

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

a

v : pro

K

� ` a :box

K

� ` x :
han

K

0

>

�; y :> ` P :pro

K

00

K � K

0

� K

00

� ` x

a

p:P :pro

K

0

Intera
ting with a box (at any transmissible S) More generally, a wrapper may

re
eive from a box tuples
ontaining names whi
h are to be used for
ommuni
ating

with the box as
hannel names, for example

x

a

(

v r

)

:

�

C :r

a

j : : :

�

re
eives a value v and name r from box a and uses r to send an a
k ba
k into a. This

ne
essarily involves some run-time type
he
king, as the box may send a tuple instead

of a name for r. There is a design
hoi
e here: how strong should this type
he
king

be? Requiring an implementation to maintain a run-time re
ord of the types of all

names would be
ostly, so we
he
k only the stru
ture of values re
eived from boxes.

We suppose the run-time representations of values allow names (bit-patterns of some

�xed length) and tuples to be distinguished, and the number of items in a tuple to be

determined, but no more (so e.g. x :
han

K

T and y :box

L

will both be represented as

bit patterns of the same length). We introdu
e the supertype name of
han

K

T and

box

L

, and allow a wrapper to re
eive only values of the transmissible types

S ::= > j name j hS :: Si

To send a value to a box by C :x

a

v it is ne
essary only for x to be of type name.

The operational semanti
s expresses this run-time type
he
king by means of the

ondition that f

v

=

p

gP is well-de�ned in the redu
tion
ommuni
ation rule and the

labelled-transition input rules { for example, f

h

z z

i

=

x

gC :x

?

is not well-de�ned, as the

syntax does not allow a tuple to o

ur in
hannel-name position of an output. We

would like to ensure that run-time type
he
king is only required when re
eiving values

from a box, i.e. that for
ommuni
ation within a wrapper or between a wrapper and

its parent su
h a substitution is always well-de�ned. This is guaranteed by requiring

a box input pre�x to immediately test all parts of a re
eived value that are assumed

of type name { in typing an input x

a

p:P the type environment � derived from the

pattern p must
ontain no tuples, and all x :name in � must be used within P as a

hannel or box. For example, if a :box

K

and x :
han

K

hnamenamei then

x

a

(

y z

)

:

�

K :y

a

j K :z

a

�

is well-typed as the pattern

(

y z

)

ompletely de
omposes values of type hnamenamei

and both y and z are used as
hannels in K :y

a

j K :z

a

. On the other hand

x

a

w:x

?

w

is not, as it may re
eive (for example) a triple from the box, leading to a later run-

time error within the wrapper. The type system is
onservative in also ex
luding

25

Patterns:

` :T B ; ` x : T B x : T

` p

1

:T

1

B �

1

:: ` p

k

:T

k

B �

k

`

(

p

1

:: p

k

)

: hT

1

:: T

k

i B �

1

; ::;�

k

Values:

�; x :T ` x :T

� ` v

1

:T

1

:: � ` v

k

:T

k

� `

h

v

1

:: v

k

i

:hT

1

:: T

k

i

fn(v) � dom(�)

� ` v :>

T atomi

�; x :T ` x :name

Pro
esses:

o 2 f?; "; "g

� ` x :
han

K

T

� ` v :T

C � K

� ` C :x

o

v : pro

K

(Out-?; "; ")

� 2 f?; "g

� ` x :
han

K

T

` p :T B �

�;� ` P :pro

K

� ` x

�

p:P :pro

K

(In-?; ")

o 2 fa; ag

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

o

v : pro

K

(Out-a; a)

� ` a :box

K

0

� ` x :
han

K

S

` p :S B �

�;� ` P :pro

K

K

0

� K

�
at

P tests all names of type name in �

p
ontains no wild
ards

� ` x

a

p:P :pro

K

(In-a)

� ` P :pro

K

� ` Q :pro

K

0

� ` P j Q :pro

K\K

0

(Par)

� ` n :box

K

pn(P) � K

fn(P) � dom(�)

� ` n[P ℄ :pro

K

(Box)

� ` 0 :pro

K

(Nil)

�; x :T ` P :pro

K

T atomi

� ` (� x)P :pro

K

(Res)

� ` P :pro

K

0

K � K

0

� ` P :pro

K

(Spe
)

The repli
ated input rules are similar to the input rules. The predi
ate

`P tests all names of type name in �' is de�ned to be true i� for all y :name

in �, y o

urs free in
hannel or box position within P .

Figure 9: Coloured Box-� Typing

26

x

a

(

y z

)

:

�

K :y

a

�

. Say a type is atomi
 if it is of the form name,
han

K

T or box

K

and

at if it is of the form >, name,
han

K

T , or box

K

. Say � is atomi
 or
at if all

types in ran(�) are. The atomi
 types are those whi
h
an be dynami
ally extended

using restri
tion. We
onsider dynami
s (redu
tions and labelled transitions) only

for pro
esses with respe
t to atomi
 typing
ontexts; the de�nitions ensure that an

extruded name
an always be taken to be of an atomi
 type. The
al
ulus has no basi

data types, e.g. a type of integers, that are not dynami
ally extensible. This makes

the type system a little degenerate.

Nil and Restri
tion The typing rules for nil and restri
tion are straightforward;

there is also a spe
ialisation rule allowing some permitted a�e
tees of a pro
ess to be

forgotten.

� ` 0 :pro

K

�; x :T ` P :pro

K

T atomi

� ` (� x)P :pro

K

� ` P :pro

K

0

K � K

0

� ` P :pro

K

5.1 Soundness

We wish to infer properties of the
oloured input/output behaviour of wrappers from

the soundness of the type system, and therefore need a subje
t redu
tion result whi
h

refers not only to redu
tions (equivalently, � transitions) but also to input/output

transitions. De�ne typed labelled transitions by

� `

K

P

`

�!

C

Q i�

�

� atomi
 ^ � ` P :pro

K

^ dom(�) ` P

`

�!

C

Q

�

The subje
t redu
tion theorem for ` an output x

o

v should state that x, o, v and Q

have suitable types; the theorem for ` an input should state that if `
an be typed then

Q
an. The result is
ompli
ated by the fa
t that box-� is a
al
ulus with new name

generation, so new names
an be extruded and intruded. Type environments for these

names are
al
ulated as follows. For a type environment �, with � atomi
, and a value

v extruded at type T de�ne the type environment t
(�; v; T) for new names in v as

follows.

t
(�; x; T) = x :T if x 62 dom(�)

and T atomi

t
(�; x;>) = x :name if x 62 dom(�)

t
(�; x; T) = ; if � ` x :T

t
(�;

h

v

1

:: v

k

i

;>) =

V

1::n

t
(�; v

i

;>)

t
(�;

h

v

1

:: v

k

i

; hT

1

:: T

k

i) =

V

1::n

t
(�; v

i

; T

i

)

t
(�; v; T) unde�ned elsewhere

Here

V

i21::k

�

i

is the type environment that maps ea
h x in some dom(�

i

) to

V

fT j 9i :

x :T 2 �

i

g, where all of these are de�ned.

V

i21::k

�

i

is unde�ned otherwise. Note that

in the >
ase the t
(�; v

i

;>) will ne
essarily all be well-de�ned and will be
onsistent.

To see the need for

V

,
onsider � =
 :
han

K

hbox

K

namei and P = (� x)

?

h

xx

i

. P

has an extrusion transition with value

h

xx

i

; the type
ontext t
(�;

h

xx

i

; hbox

K

namei)

should be well-de�ned and equal to x :box

K

.

Further, the type system involves subtyping, so t
(�; v; T)
an only be used as a

bound on the extruded/intruded type environments. Say � � �

0

i� dom(�) = dom(�

0

)

and 8x 2 dom(�) : �(x) � �

0

(x).

27

We
an now state the subje
t redu
tion result. For output tags f?; "g and " the

name x is guaranteed to have a
hannel type and v the type
arried; for a and a

they are only guaranteed to be a name and a value of type >. f?; "g and a are

ommuni
ation tags, so x
annot be extruded, whereas " and a are movement tags, so

x may be extruded. By
onvention we elide a
onjun
t that t
(:::) is de�ned wherever

it is mentioned.

Theorem 10 (Subje
t Redu
tion) If � `

K

P

x

o

v

�!

C

Q then

ase o 2 f?; "g: for some K

0

; T we have C � K

0

, � ` x :
han

K

0

T , and there exists

� � t
(�; v; T) su
h that �;� ` Q :pro

K

.

ase o =": for some K

0

; T we have C � K

0

and there exists � � t
(�;

h

x v

i

; h
han

K

0

T T i)

su
h that �;� ` Q :pro

K

.

ase o = a: for some K

0

we have C � K

0

, � ` a :box

K

0

, and there exists a type envi-

ronment � � t
(�;

h

x v

i

; hname; >i) su
h that �;� ` Q :pro

K

.

ase o = a: for some K

0

we have C � K

0

, � ` a :box

K

0

, � ` x :name, and there exists

� � t
(�; v;>) su
h that �;� ` Q :pro

K

.

If � `

K

P

x

v

�!

C

Q then

ase
 2 f?; "g: for some K

0

, T we have � ` x :
han

K

0

T . If moreover C � K

0

and

� � t
(�; v; T) then �;� ` Q :pro

K

.

ase
 = a: for some K

0

� K

00

, and S we have � ` a :box

K

0

, � ` x :
han

K

00

S,

t
(�; v; S) well-de�ned, and ran(t
(�; v; S)) � fnameg. If moreover C � K

00

and � � t
(�; v; S) then �;� ` Q :pro

K

.

ase
 = a: for some K

0

we have � ` a :box

K

0

. If moreover C � K

0

and we have

� � t
(�;

h

x v

i

; hname>i) then �;� ` Q :pro

K

.

If � `

K

P

�

�!

C

Q then C = ; and � ` Q :pro

K

.

A run-time error for box-� is a pro
ess in whi
h a potential
ommuni
ation fails

be
ause the asso
iated substitution is not de�ned. More pre
isely, P
ontains a run-

time error if it
ontains subterms x

v and x

p:P in parallel (and not under an input

pre�x) and f

v

=

p

gP is not de�ned. In a well-typed pro
ess run-time errors
an only

o

ur within boxes (whose
ontents are untyped) or at
ommuni
ations from a box

to the wrapper. Internal transitions of the wrapper and
ommuni
ations between the

wrapper and its parent therefore do not require dynami
 type
he
king.

Theorem 11 (Limited Runtime Errors)

If � ` P :pro

K

, P � (� x

1

:: x

n

)

�

x

v j x

p:P

0

j Q

�

, � atomi
, P

0

does not
ontain a

box and
 2 f?; "g then f

v

=

p

gP is well-de�ned. Similarly for repli
ated input.

5.2 Typing the Ordered Pipeline Wrapper

Finally, we
an show that instantiations of F are well-typed and use the subje
t re-

du
tion theorem to
on
lude that F has the
ausal
ow property.

28

Theorem 12 (F typing) If

� = �

1

; in

1

:
han

fpg

>; out

1

:
han

fpg

>; from :
han

fpg

h>namei;

in

2

:
han

fqg

>; out

2

:
han

fp;qg

>; to :
han

fp;qg

h>
han

fp;qg

hii

and also fn(P;Q) � dom(�)� fa; bg

then � ` ; ÆF(P;Q) :pro

p

.

The proof of this involves type assumptions for the new-bound names of F as follows.

a:box

fpg

b:box

fp;qg

bu� :
han

fpg

h
han

fpg

h>
han

fpg

hi

i

han

fp;qg

h>
han

fp;qg

hi

ii

full :
han

fp;qg

h
han

fp;qg

h>
han

fp;qg

hi

i

han

fp;qg

h>
han

fp;qg

hi

i

>i

A straightforward indu
tion on tra
e lengths using the Subje
t Redu
tion theorem then

proves the desired
ausal
ow result:

Theorem 13 Wrapper F has the
ausal
ow property.

6 Dis
ussion

Poli
y enfor
ement me
hanisms: Wrappers impose se
urity poli
ies on
ompo-

nents for whi
h it is impra
ti
al to analyze the internal stru
ture, e.g. where only

untyped obje
t
ode is available.

Several alternative approa
hes are possible, di�ering in the level of trust required,

the
exibility of the se
urity poli
y enfor
ed, and their
osts to
omponent produ
ers

and users. Code signing and Java-style sandboxing have low
ost but
annot enfor
e

exible poli
ies { signed
omponents may behave in arbitrary ways whereas sandboxed

omponents should not be able to intera
t with ea
h other at all. Code signing requires

the user to have total trust in the
omponent produ
ers { not just in their intent, but

also in their ability to produ
e bug-free
omponents. Sandboxing requires no trust,

but the la
k of any intera
tion is often too restri
tive. More deli
ate poli
ies
an

be enfor
ed by shipping
ode together with data allowing the user to type-
he
k it

in a se
urity-sensitive type system [43, 17℄, or to
he
k a proof of a se
urity-relevant

behavioural property [27℄. In the long term these seem likely to be the best approa
hes,

but they require
omponent produ
ers to invest e�ort and to
onform to a
ommon

standard for types or proofs { in the short term this is prohibitive. Shifting the burden

of proof to the user, by performing type inferen
e or stati
 analysis of downloaded
ode,

seems impra
ti
al given only the obje
t
ode, whi
h may not have been written with

se
urity in mind and so may not
onform to any reasonable type system. In
ontrast,

wrappers have been shown to have low-
ost { none to the produ
er and only a small

run-time
ost to the user [12℄. They allow more
exible intera
tion than sandboxing,

albeit
oarser-grain poli
ies than proof-
arrying
omponents or se
urity-type-
he
ked

omponents.

29

Information
ow properties: The
ausal
ow property is related to the property,

studied in many
ontexts, that there is no information
ow from a high to a low se
urity

level (though most work addresses
omponents, whi
h may have the property, rather

than wrappers, whi
h may enfor
e it on sub
omponents). The literature
ontains a

range of de�nitions that aim to
apture this intuition in some parti
ular setting; the

formalisations vary widely. A basi

hoi
e is whether the property is stated purely

extensionally, in terms of a semanti
s that des
ribes only the input/output behaviour

of a system, or using a more intensional semanti
s. A line of work on Non-Interferen
e,

summarised in [25℄, takes an extensional approa
h, stating properties in terms of the

tra
es of input and output events of a system. Related de�nitions, adapted to a pro-

gramming language setting, are used in [43, 17℄. In the presen
e of nondeterminism,

however, non-interferen
e be
omes problemati
 { as dis
ussed in [42℄, the property may

only be meaningful given probabilisti
 s
heduling, whi
h has a high run-time
ost.

We believe that the basi
 diÆ
ultly is that the intuitive property is an intensional

one { the notion of one
omponent a�e
ting another depends on some understanding

of how
omponents intera
t; a pre
ise statement requires a semanti
s that
aptures

some aspe
ts of internal exe
ution, not just input/output behaviours. This might be

denotational or operational. Intensional denotational semanti
s have been used in the

proofs (and, in the last, statements) of non-interferen
e properties in [17, 1, 31℄, whi
h

use a logi
al relations proof and PER-based models. [42℄ and [31℄ go on to
onsider

probabilisti
 properties.

For wrappers, it is important that the end-user be able to understand the se
urity

that they provide as
learly as possible. We therefore wish to use as lightweight a

semanti
s as possible, as this must be understood before any se
urity property stated

using it, and so adopt an annotated operational semanti
s (developing a satisfa
tory

denotational semanti
s of box-�, dealing with name
reation, boxes, and untyped
om-

ponents, would be a
hallenging resear
h problem in its own right). In a sequential

setting annotated operational semanti
s have been used by [46℄; see also [24℄. The

de�nition of the
oloured semanti
s for box-� seems unproblemati
, but in general one

might validate an annotated semanti
s by relating it to a lower-level exe
ution model

(as mentioned below).

Negle
ting boxing and wrappers for the moment,
onsidering simply �-pro
esses,

we believe that intensional properties stated in terms of
ausal
ow will generally imply

properties stated purely in terms of tra
e-sets. As a starting point, we show that our

type system implies a non-interferen
e property (similar to the permutation property

of [35℄, but for pro
esses rather than wrappers) in a parti
ular
ase. We prove that

an output on a `low'
hannel
an always be permuted before an input on a `higher'

hannel (with respe
t to the latti
e of sets of
olours).

Proposition 14 If L (H and fh :
han

H

U; l :
han

L

V g ` P :pro

;

then

fh; lg ` P

h

?

u

�!

l

?

v

�! Q implies fh; lg ` P

l

?

v

�!

h

?

u

�! Q:

Proof Sket
h One
an �rst show that ; ÆP has
oloured transitions with the in-

put
oloured H and the output by some C. By subje
t redu
tion C � L. Analysing the

form of P with Lemmas 21,20 from [35℄, and using L (H, shows that the output term

in P is not pre�xed by the input, so the transitions
an be permuted. 2

Information
ow type systems: The type system di�ers from previous work [43,

30

42, 28℄ primarily in handling badly typed
omponents. Ne
essarily, it does not provide

�ne-grain tra
king of information
ow through these
omponents. It also handles

nondeterminism, new name
reation and
hannel passing. Pre
ise
omparisons with

related type systems are diÆ
ult as the languages involved di�er widely. One
an,

however, embed fragments of these languages into box-� (noting that this only exploits

the fully-typed part of our
al
ulus). For example, in the work of Smith and Volpano

[39℄ an assignment to a low se
urity variable
an follow an assignment to a high variable

{ the program h:=3;l:=1 is well-typed. The natural translation of this program in

box-� would be

(h

?

0 j l

?

0) j h

?

y:(h

?

3 j l

?

y:l

?

1)

where the left subterm models an initial store assigning 0 to h and l. This would not

be well-typed in the system of this paper, taking h :
han

fH;Lg

Int, l :
han

fLg

Int and

a new base type Int. Here the low assignment is
ausally dependent on the high, even

though no high information
an leak. On the other hand a box-� en
oding of bran
hes

would not forbid high variable guards. In re
ent papers, type systems for
apturing

information
ow in the �-
al
ulus have been proposed by Honda, Vas
on
elos and

Yoshida [20℄, and by Hennessy and Riely [18℄. We leave detailed
omparison of the

expressiveness of these systems and the � fragment of the
ausal type system presented

here to future work.

Causal
ow is a robust and straightforward property; it
an be enfor
ed by a re-

markably simple type system. But, as the example above shows, it is sometimes over-

onstraining. We envisage that in a large system the bulk of the
ode will be typeable

in a se
ure type system, a small portion will be in
learly-identi�ed unsafe modules

that are subje
t only to
onventional type
he
king, and a small portion (any untrusted

ode) will be en
apsulated in wrappers. Automati
 type inferen
e would be required

to relieve the burden of adding se
urity annotations to all de
larations.

7 Con
lusion

The issue of se
urely
omposing untrusted or partially trusted
omponents has great

pra
ti
al relevan
e. In this paper we have studied te
hniques for formally proving that

software wrappers { the glue between
omponents { a
tually enfor
e user-spe
i�ed

information
ow
onstraints. We have de�ned a
oloured operational semanti
s for a

on
urrent wrapper language. By keeping tra
k of all the prin
ipals that have a�e
ted

a pro
ess in the semanti
s it be
omes easy to formulate
lear statements of information

ow properties. To prove that parti
ular wrappers are se
ure, we de�ned a
ausal type

system and so only need show that the wrappers are well typed.

Throughout the paper we fo
ussed on wrapper properties { the
al
ulus, statement

of se
urity properties and type system are all designed spe
i�
ally for wrappers { but

we believe similar te
hniques are appli
able to other situations in whi
h intera
tion

must be
ontrolled but not
ompletely ex
luded, for example in isolating a se
urity-

riti
al kernel of a single appli
ation, or in
ontrolling intera
tions between pa
kets

in an a
tive network. Allowing untyped
ode fragments in otherwise typed programs

gives a way to loosen se
urity restri
tions when ne
essary.

To make the theoreti
al work of this paper tra
table we made the simplifying as-

sumption that all
omponents are expressed in box-�. It is important to relax this

assumption, looking at more realisti
 models. In future work it would be worth inte-

grating the
ausal type system with a lower-level semanti
s for obje
t
ode, su
h as the

typed assembly language of [14℄. As we note above, one would expe
t real appli
ations

31

to
ontain some (small) non-
ausally-typable parts, and perhaps also to require spe
ial

OS support for asyn
hronous intera
tion. The issue of type inferen
e of se
urity levels

should be addressed, and the proper statement of properties involving dynami

hanges

in information
ow poli
y is also open.

A
knowledgementsWe would like to thank J. Leifer, J. Palsberg and the anonymous

referees for
omments. The �rst author was supported by a Royal So
iety University

Resear
h Fellowship and by EPSRC grant GR/L 62290 Cal
uli for Intera
tive Systems:

Theory and Experiment. The se
ond author did part of this work in the Obje
t System

Group at the University of Geneva.

A Coin
iden
e of the Labelled Transition and Re-

du
tion Semanti
s

This appendix
ontains the proof of equivalen
e of the labelled transition semanti
s and

the redu
tion semanti
s. It is divided into three parts, the �rst giving basi
 properties

of the labelled transition system, the se
ond showing that any redu
tion
an be mat
hed

by a � -transition and the third showing the
onverse.

A.1 Basi
 Properties of the LTS

The �rst lemmas are all proved by indu
tion on derivations of transitions.

Lemma 15 If P � Q then fn(P) = fn(Q).

Lemma 16 If A ` P

`

�! Q then

1. fn(P) � A

2. fn(Q) � fn(P; `)

3. if ` = x

o

v then fn(`) \ A � fn(P)

4. if ` = x

o

v then fn(o) � fn(P)

5. if ` = x

o

v and :mv(o) then x 2 fn(P)

6. if ` = x

v then fn(
) � fn(P).

7. if ` = x

v and
 6= n then x 2 fn(P).

Lemma 17 (Strengthening) If A;B ` P

`

�! P

0

and B \ fn(P; `) = ; then A `

P

`

�! P

0

.

Lemma 18 (Inje
tive Substitution) If A ` P

`

�! P

0

, and f :A!B and g :(fn(`)�

A)!(N �B) are inje
tive, then B ` fP

(f+g)`

�! (f + g)P

0

.

Lemma 19 (Weakening and Strengthening) (A ` P

`

�! P

0

^ x 62 A [fn(`)) i�

(A; x ` P

`

�! P

0

^ x 62 fn(P; `)).

32

Proof The right-to-left impli
ation follows from the well-formedness of A; x and

from Lemma 17. The left-to-right impli
ation follows from the
ondition fn(P) � A in

the de�nition of the transition rules and from Lemma 18, taking f to be the in
lusion

from A to A; x and g the identity on fn(`)�A. 2

Lemma 20 (Shifting) 1. (A ` P

z

�

v

�! P

0

^ x 2 fn(v) � A) i� (A; x ` P

z

�

v

�! P

0

^

x 2 fn(v)� fn(P)) .

2. (A ` P

z

n

v

�! P

0

^ x 2 fn(z; v)�A) i� (A; x ` P

z

n

v

�! P

0

^ x 2 fn(z; v)� fn(P))

Proof Sket
h Ea
h part is by two indu
tions on derivations of transitions. 2

As we are working up to alpha
onversion a little
are is required when analysing

transitions. We need the following lemma (of whi
h only the input and restri
tion
ases

are at all interesting).

Lemma 21 1. A ` x

o

v

`

�! Q i� fn(x

o

v) � A, ` = x

o

v and Q � 0.

2. A ` x

�

p:P

`

�! Q i� there exists v su
h that fn(x

�

p:P) � A, ` = x

�

v, f

v

=

p

gP is

de�ned and Q � f

v

=

p

gP .

3. A ` !x

�

p:P

`

�! Q i� there exists v su
h that fn(!x

�

p:P) � A, ` = x

�

v, f

v

=

p

gP is

de�ned and Q � !x

�

p:P j f

v

=

p

gP .

4. A ` n[P ℄

`

�! Q i� one of the following hold.

(a) there exist x, v, and

^

P su
h that n 2 A, ` = � , A ` P

x

"

v

�!

^

P , and Q �

(� fn(x; v) �A)(x

n

v j n[

^

P ℄).

(b) there exist x and v su
h that fn(n[P ℄) � A, ` = x

n

v and Q � n[x

"

v j P ℄.

(
) there exists

^

P su
h that n 2 A, ` = � , A ` P

�

�!

^

P , and Q � n[

^

P ℄.

5. A ` P j Q

`

�! R i� either

(a) there exists

^

P su
h that fn(Q) � A, A ` P

`

�!

^

P and R �

^

P j Q.

(b) there exists x,
, v,

^

P and

^

Q su
h that ` = � , A ` P

x

v

�!

^

P , A ` Q

x

v

�!

^

Q,

and R � (� fn(x; v) �A)(

^

P j

^

Q).

or symmetri

ases.

6. A ` (� x)P

`

�! Q i� either

(a) there exists x̂ 62 A[fn(`)[(fn(P)�x) and

^

Q su
h that A; x̂ ` f

x̂

=

x

gP

`

�!

^

Q

and Q � (� x̂)

^

Q.

(b) there exists y, o, v,

^

Q and x̂ 62 A [fn(y; o) [(fn(P)� x) su
h that ` = y

o

v,

A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o) and Q �

^

Q.

33

(
) there exists y, o, v,

^

Q and x̂ 62 A [fn(o) [(fn(P) � x) su
h that ` = y

o

v,

A; x̂ ` f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) and Q �

^

Q.

Proof Sket
h The right-to-left impli
ations are all shown using a single transition

rule together with (Trans Stru
t Right). The left-to-right impli
ations are shown by

indu
tion on derivations of transitions. 2

A.2 Redu
tions Imply Transitions

Take the size of a derivation of a stru
tural
ongruen
e to be number of instan
es of

inferen
e rules
ontained in it.

Lemma 22 If P

0

� P and f

v

=

p

gP is de�ned then f

v

=

p

gP

0

is de�ned and f

v

=

p

gP

0

�

f

v

=

p

gP . Moreover, for any derivation of P

0

� P there is a derivation of the same size

of f

v

=

p

gP

0

� f

v

=

p

gP .

Proof Sket
h Immediate. 2

Proposition 23 If P

0

� P then A ` P

0

`

�! Q i� A ` P

`

�! Q.

Proof Sket
h A lengthy indu
tion on the size of derivation of P

0

� P . The most

interesting
ases are for the stru
tural
ongruen
e axioms for s
ope extrusion a
ross

parallel
omposition and boxes. 2

Lemma 24 If fn(P) � A and P ! Q then A ` P

�

�! Q.

Proof Sket
h Indu
tion on derivations of P ! Q,
onstru
ting derivations of � -

transitions for the redu
tion axioms (Red Up), (Red Down), (Red Comm) and (Red

Repl), and using Proposition 23 for the (Red Stru
t)
ase. We give the �rst three
ases

in detail.

(Red Up)

A ` x

"

v

x

"

v

�! 0

(Trans Out)

A ` x

"

v j Q

x

"

v

�! 0 j Q

(Trans Par)

A ` n[x

"

v j Q℄

�

�! (� fn(x; v) �A)(x

n

v j n[0 j Q℄)

(Trans Box-1)

By the premise fn(n[x

"

v j Q℄) � A we have fn(x; v) � A, so using (Trans Stru
t

Right) we have A ` n[x

"

v j Q℄

�

�! x

n

v j n[Q℄, the right hand side of whi
h is

exa
tly the right hand side of (Red Up).

(Red Down)

A ` x

n

v

x

n

v

�! 0

(Trans Out)

x 2 A

A ` n[Q℄

x

n

v

�! n[x

"

v j Q℄

(Trans Box-2)

A ` x

n

v j n[Q℄

�

�! (� fn(v)�A)(0 j n[x

"

v j Q℄)

(Trans Comm)

34

By the premise fn(x

n

v j n[Q℄) � A we have x 2 A and also fn(v) � A, so using

(Trans Stru
t Right) we have A ` x

n

v j n[Q℄

�

�! n[x

"

v j Q℄, the right hand side

of whi
h is exa
tly the right hand side of (Red Down).

(Red Comm)

A ` x

�

v

x

�

v

�! 0

(Trans Out)

A ` x

�

p:P

x

�

v

�! f

v

=

p

gP

(Trans In)

A ` x

�

v j x

�

p:P

�

�! (� fn(v)�A)(0 j f

v

=

p

gP)

(Trans Comm)

The side
ondition f

v

=

p

gP de�ned for (Trans In) is ensured by the same
ondition

for (Red Comm). By the premise fn(x

�

v j x

�

p:P) � A we have fn(v) � A, so

using (Trans Stru
t Right) we have A ` x

�

v j x

�

p:P

�

�! f

v

=

p

gP , the right hand

side of whi
h is exa
tly the right hand side of (Red Comm).

2

A.3 Transitions Imply Redu
tions

For the
onverse dire
tion we �rst show that if a pro
ess has an output or input

transition then it
ontains a
orresponding output, input or box subterm.

Lemma 25 If A ` P

z

o

v

�! P

0

then P � (� fn(z; v)�A)(z

o

v j P

0

)

Proof Sket
h Indu
tion on derivation of A ` P

z

o

v

�! P

0

. 2

Lemma 26 If A ` Q

x

�

v

�! Q

0

then there exist B; p;Q

1

and Q

2

su
h that B \ (A [

fn(x

�

v)) = fg and either Q � (� B)(x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or

Q � (� B)(! x

�

p:Q

1

j Q

2

) and Q

0

� (� B)(f

v

=

p

gQ

1

j !x

�

p:Q

1

j Q

2

).

Proof Sket
h Indu
tion on derivation of A ` Q

x

�

v

�! Q

0

. 2

Lemma 27 If A ` Q

x

n

v

�! Q

0

then there exist B, Q

1

and Q

2

su
h that B \ (A [

fn(x

n

v)) = fg, Q � (� B)(n[Q

1

℄ j Q

2

) and Q

0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

).

Proof Sket
h Indu
tion on derivation of A ` Q

x

n

v

�! Q

0

. 2

Lemma 28 If A ` P

�

�! Q then P ! Q.

Proof Sket
h Indu
tion on derivations of A ` P

�

�! Q, using the pre
eding three

lemmas for the (Trans Box-1) and (Trans Comm) rules. 2

The proof of Theorem 1, i.e. that if fn(P) � A then A ` P

�

�! Q i� P ! Q, is

now immediate from Lemmas 24 and 28.

35

B Purity and Honesty

This appendix sket
hes the proofs of purity and honesty results. We �rst give another

transition-analysis lemma. This allows us to rename extruded names in a label instead

of in the sour
e pro
ess term.

Lemma 29 If A ` (�N)P

`

�! Q, ` = y

"

v, and A, N and M are pairwise disjoint

�nite sets of names then there exists a partition N

1

; N

2

of N , a pro
ess P

0

, and

h :(fn(`)�A)!(N � (A;N

2

;M))

inje
tive su
h that

A;N ` P

(1

A

+h)`

�! P

0

A ` (�N)P

(1

A

+h)`

�! (�N

2

)P

0

� (1

A

+ h)Q

N

2

= N � fn((1

A

+ h)`)

Proof Sket
h Indu
tion on N , using Lemmas 18 and Lemma 21.6. 2

The simple se
urity properties are proved using an expli
it
hara
terisation of the

states and labelled transitions of W

1

(P). If N is a �nite set of names, a is a name and

A and Q are pro
esses de�ne

[[a;N ;A;Q℄℄

def

= (�N [fag)

�

A

j a[Q℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

Say the 4-tuple a, N , A, Q is good if N , fag, and fin; outg are pairwise disjoint, A is

a parallel
omposition of outputs of the forms

out

a

v; out

"

v; in

a

v; x

a

v where x 62 fout; ag

with a 62 fn(v) in ea
h
ase, and Q is a pro
ess with a 62 fn(Q). Say a pro
ess P is

good if P � [[a;N ;A;Q℄℄ for some good a, N , A, Q.

Lemma 30 If a 62 fn(P) then W

1

(P) � [[a; ;; 0;P ℄℄, hen
e W

1

(P) is good.

Proof Sket
h Straightforward. 2

We de�ne a transition relation A ` P

`

* Q as the least satisfying the following rules.

t

1

A ` [[a;N ;A;Q℄℄

in

"

v

* [[a;N ;A j in

a

v;Q℄℄ fn(v) \ (N [fag) = ;

t

2

A ` [[a;N ;A j in

a

v;Q℄℄

�

* [[a;N ;A;Q j in

"

v℄℄

t

4

A;N; a ` Q

out

"

v

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N; fn(v)� (A;N; a);A j out

a

v;Q

0

℄℄

t

5

A;N; a ` Q

x

"

v

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N; fn(x; v)� (A;N; a);A j x

a

v;Q

0

℄℄

t

6

A ` [[a;N ;A j out

a

v;Q℄℄

�

* [[a;N ;A j out

"

v;Q℄℄

t

7

A ` [[a;N ;A j out

"

v;Q℄℄

out

"

v

* [[a;N � fn(v);A;Q℄℄

t

8

A;N; a ` Q

�

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N ;A;Q

0

℄℄

36

A ` P

`

* P

0

P

0

� P

00

A ` P

`

* P

00

For rule t

5

, we have a side
ondition that x 6= out. For all rules we have a side
ondition

that the 4-tuple in the left hand side of the
on
lusion is good. For all rules we have a

side
ondition that the free names of the pro
ess on the left hand side of the
on
lusion

are
ontained in A.

Lemma 31 If A ` P

`

* P

0

then P

0

is good.

Proof By inspe
tion of the transition axioms,
he
king that the 4-tuple on the

right hand side is good in ea
h
ase, and noting that the de�nition of P good is pre-

served by stru
tural
ongruen
e. For t

4

by the
ondition fn([[a;N ;A;Q℄℄) � A we

have fin; outg � A so fin; outg \ (fn(v) � (A;N; a)) = ;. By Lemma 16.3 a 62 fn(v)

By Lemma 16.2 a 62 fn(Q

0

). For t

5

by the
ondition fn([[a;N ;A;Q℄℄) � A we have

fin; outg � A so fin; outg \ (fn(x; v) � (A;N; a)) = ;. By Lemma 16.3 a 62 fn(x; v)

By Lemma 16.2 a 62 fn(Q

0

). For t

8

by Lemma 16.2 a 62 fn(Q

0

). The other
ases are

straightforward. 2

Lemma 32 For all good P we have A ` P

`

�! P

0

i� A ` P

`

* P

0

.

Proof Sket
h We �rst show that A ` P

`

* P

0

implies A ` P

`

�! P

0

, by indu
tion

on derivations of the former. The
onverse dire
tion is by a
ase analysis of the possible

transition derivations. 2

Proof Sket
h (of Proposition 2 (Purity)) We show by indu
tion on k that Q is

good and that the
on
lusion holds. The k = 0
ase is by Lemma 30. The indu
tive

step uses Lemmas 31 and 32. 2

Proof Sket
h (of Proposition 5 (Honesty)) To
he
k that the unary wrapper W

1

is honest, if N is a �nite set of names, a is a name and A and Q are pro
esses de�ne

hhha;N ;A;Qiii

def

= Q

j fj out

"

v j out

a

v 2 A jg

j fj out

"

v j out

"

v 2 A jg

j fj x

"

v j x

a

v 2 A ^ x 6= out jg

j fj in

"

v j in

a

v 2 A jg

hha;N ;A;Qii

def

= (�N)hhha;N ;A;Qiii

Note that if a;N ;A;Q is good then a 62 fn(hha;N ;A;Qii). Now take the family of

relations below.

R

A

= � Æf [[a;N ;A;Q℄℄; hha;N ;A;Qii j a;N ;A;Q good and fn([[a;N ;A;Q℄℄) � A gÆ �

Wemust
he
k that for any P with a 62 fn(P) and A � fn(W

1

(P)) we haveW

1

(P) R

A

P

and that R is an h-bisimulation. The former follows from Lemma 30 and the fa
t

hha; ;; 0;P ii � P . For the latter there are a number of
ases to
he
k; we omit the

details. 2

37

C Causality Typing: Soundness and Appli
ation

This appendix gives the soundness proofs for the type system (of the Subje
t Redu
-

tion and Limited Runtime Error theorems) and the proof that F has the
ausal
ow

property.

C.1 Soundness

The proof of Subje
t Redu
tion is divided into three main parts. First we require

lemmas giving
onditions under whi
h a substitution is well-de�ned and well-typed

(here `good'). We then prove substitution lemmas for values and pro
esses by indu
tion

on typing derivations, and �nally the Subje
t Redu
tion result by indu
tion on pairs

of transition and typing derivations. The Limited Runtime Error result is almost an

immediate
onsequen
e of these lemmas.

Say �;� ` f

u

=

p

g good i� f

u

=

p

g is well-de�ned, dom(f

u

=

p

g) = dom(�), and 8x :T 2

� : � ` f

u

=

p

gx :T . We adopt the
onvention below that wherever t
(�; v; T) is men-

tioned it is also assumed well-de�ned.

Lemma 33 If � =

V

i21::n

�

i

and for some j 2 1::n �

j

` v :T then � ` v :T .

Proof Sket
h Indu
tion on derivation of �

j

` v :T , using the fa
t that atomi

types are down-
losed in the (Name)
ase. 2

Lemma 34 (t
) If �

def

= t
(�; v; T) then � atomi
 and �;� ` v :T .

Proof Sket
h The �rst part is by indu
tion on v, noting that the set of atomi

types is
losed under de�ned glbs. The se
ond part is also by indu
tion on v. 2

Lemma 35 If � atomi
 then t
(�; v;>) is well-de�ned and is equal to the type
ontext

mapping ea
h x 2 fn(v)� dom(�) to name.

Proof Sket
h Indu
tion on v. 2

Lemma 36 (Goodness - Standard - Preliminary) If

� atomi

� ` u :U

` p :U B �

then �;� ` f

u

=

p

g good.

Proof Sket
h By indu
tion on the two typing derivations, with
ase analysis on

the last rule of the pattern judgement. 2

Note that this result requires that the range of �
ontains no tuple types. Consider

u = x, U = hbox

K

box

K

i, � = x :U and p =

(

y z

)

. We have ` p :U B y :box

K

; z :box

K

but f

x

=

(

y z

)

g is not well-de�ned.

38

Lemma 37 (Goodness - Dynami
) If

� atomi

` p :S B �

dom(�) and dom(�) disjoint

f

u

=

p

g well de�ned

�
at (so ran(�) � f>;nameg)

8y :name 2 � : f

u

=

p

gy is a name

p
ontains no wild
ards

then �

def

= t
(�; u; S) is well-de�ned, ran(�) � fnameg, and �;�;� ` f

u

=

p

g good.

Proof Sket
h By indu
tion on the pattern p, using Lemmas 35 and 33 in the vari-

able and tuple
ases. 2

Lemma 38 (Substitution - values) If

�;� ` v :T

�;�;� ` f

u

=

p

g good

then f

u

=

p

gv is well-de�ned and �;� ` f

u

=

p

gv :T

Proof Sket
h By �;�;� ` f

u

=

p

g good we have that f

u

=

p

g is well-de�ned, so f

u

=

p

gv

is well-de�ned. The se
ond part is proved by indu
tion on the value typing derivation.

2

Note that for this to hold the typing rules must ensure that names of tuple types do

not have type name. Note also that this lemma does not require any atomi
ity, and

that that is important in the �rst input
lause of the pro
ess substitution lemma.

Lemma 39 (Substitution - pro
esses) If

�;� ` P :pro

K

�;�;� ` f

u

=

p

g good

then (1) if f

u

=

p

gP is well-de�ned then �;� ` f

u

=

p

gP :pro

K

and (2) if P
ontains no

subterm n[Q℄ then f

u

=

p

gP is well-de�ned.

Proof Sket
h We prove both parts simultaneously by indu
tion on the size of type

derivation for P . For (1) we give two instan
es of ea
h typing rule; in ea
h
ase showing

that the premises of the right-hand instan
e follow from those of the left-hand instan
e.

This uses Lemma 38. 2

To see the need for the
ondition that P is box-free,
onsider � = ;, � = x :hnamenamei,

� = z :name, P = (� n)n[x

?

hi

℄, and f

u

=

p

g = f

h

z z

i

=

x

g. The premises of the Lemma

hold, but f

u

=

p

gP is not well-de�ned.

Lemma 40 (Painting { Ja
kson Polla
k style) If

� ` P :pro

K

C � K

then � ` C ÆP :pro

K

39

Proof Sket
h Routine indu
tion on typing derivations. 2

Lemma 41 If � ` v :T then t
(�; v; T) = ;.

Proof Sket
h Routine indu
tion on v. 2

Lemma 42 If dom(�) is disjoint from dom(�), fn(v) and fn(P) then

1. � ` v :T () �;� ` v :T .

2. t
(�; v; T) = t
((�;�); v; T).

3. � ` P :pro

K

() �;� ` P :pro

K

Proof Sket
h Routine indu
tions. 2

Lemma 43 If t
((�; y :U); v; T) well-de�ned and y 2 fn(v) then there exists some V

with U � V and t
(�; v; T) = t
((�; y :U); v; T); y :V .

Proof Sket
h Indu
tion on v, using Lemma 42.2. 2

Lemma 44 If �; y :U atomi
, � � t
((�; y :U); v; T) and y 2 fn(v) then �; y :U �

t
(�; v; T).

Proof An immediate
orollary of Lemma 43, whi
h gives that there exists some V

with U � V and t
(�; v; T) = t
((�; y :U); v; T); y :V . 2

Lemma 45 (Stru
tural Congruen
e) If � ` P :pro

K

and P � Q then � ` Q :pro

K

.

Proof Sket
h Indu
tion on derivations of P � Q. 2

Say � � �

0

i� dom(�) = dom(�

0

) and 8x 2 dom(�) : �(x) � �

0

(x).

Lemma 46 If � � �

0

and �

0

` v :T then � ` v :T .

Proof Sket
h Indu
tion on typing derivation of v. 2

Lemma 47 If � � �

0

and �

0

; � ` f

u

=

p

g good then �;� ` f

u

=

p

g good.

Proof By the de�nition of good and Lemma 46. 2

Lemma 48 If A ` P

x

o

v

�!

C

Q then C � pn(P) and pn(Q) � pn(P).

Proof Sket
h Routine indu
tion on transition derivations. 2

We
an now restate and prove Theorem 10.

40

Theorem 49 (subje
t redu
tion)

1. If � `

K

P

x

o

v

�!

C

Q and o 2 f?; "g then for some K

0

; T

� ` x :
han

K

0

T

there exists � � t
(�; v; T) su
h that �;� ` Q :pro

K

C � K

0

2. If � `

K

P

x

"

v

�!

C

Q then for some K

0

; T

there exists � � t
(�;

h

x v

i

; h
han

K

0

T T i) su
h that �;� ` Q :pro

K

C � K

0

3. If � `

K

P

x

a

v

�!

C

Q then for some K

0

� ` a :box

K

0

there exists � � t
(�;

h

x v

i

; hname; >i) su
h that �;� ` Q :pro

K

C � K

0

4. If � `

K

P

x

a

v

�!

C

Q then for some K

0

� ` a :box

K

0

� ` x :name

there exists � � t
(�; v;>) su
h that �;� ` Q :pro

K

C � K

0

5. If � `

K

P

x

v

�!

C

Q and
 2 f?; "g then for some K

0

, T � ` x :
han

K

0

T . If

moreover

� � t
(�; v; T)

C � K

0

then �;� ` Q :pro

K

.

6. If � `

K

P

x

a

v

�!

C

Q then for some K

0

� K

00

, and S we have � ` a :box

K

0

, � `

x :
han

K

00

S, t
(�; v; S) well-de�ned, and ran(t
(�; v; S)) � fnameg. If moreover

� � t
(�; v; S)

C � K

00

then �;� ` Q :pro

K

.

7. If � `

K

P

x

a

v

�!

C

Q then for some K

0

we have � ` a :box

K

0

. If moreover

� � t
(�;

h

x v

i

; hname>i)

C � K

0

then �;� ` Q :pro

K

.

8. If � `

K

P

�

�!

C

Q then C = ; and � ` Q :pro

K

.

41

Proof We give �rst the output part, for
lauses 1{4, then the input part, for 5{

7, then the tau part, for 8. Ea
h is by indu
tion on pairs of transition and typing

derivations.

Output Consider the last pair of rules used:

(Out),(Out-?; "; ") Take K

0

= K and
onsider
ases of o:

1: ?; " By Lemma 41 we
an take � = t
(�; v; T) = ;.

2: " By Lemma 41 we
an take � = t
(�;

h

x v

i

; h
han

K

0

T T i) = ;:

(Out),(Out-a; a) Take K

0

= K and
onsider
ases of o:

3: a By Lemma 41 we
an take � = t
(�;

h

x v

i

; hname; >i) = ;.

4: a By Lemma 41 we
an take � = t
(�; v;>) = ;:

(Stru
t),(*) 1{4 follow from the same
lauses of the indu
tion hypothesis and Lemma 45.

(*),(Spe
) 1{4 follow from the same
lauses of the indu
tion hypothesis and a use of

(Spe
) for Q.

(Par),(Par) Consider � `

K

P j P

0

`

�!

C

Q j P

0

with � `

K

P

`

�!

C

Q. 1{4 follow from

the same
lauses of the indu
tion hypothesis and a use of Lemma 42.3 for P

0

.

(Res-1),(Res) Consider � `

K

(� y)P

`

�!

C

(� y)Q with �; y :U `

K

P

`

�!

C

Q, ` an

output x

o

v and y 62 fn(`). Suppose o 2 f?; "g. By
lause 1 of the indu
tion

hypothesis for some K

0

; T

�; y :U ` x :
han

K

0

T

there exists � � t
((�; y :U); v; T) su
h that �; y :U;� ` Q :pro

K

C � K

0

By Lemma 42.1 � ` x :
han

K

0

T . By Lemma 42.2 t
((�; y :U); v; T) = t
(�; v; T),

so taking the same � and using the (Res) typing rule we have �;� ` (� y)Q :pro

K

as required. The other
ases of o are similar.

(Res-2),(Res) Consider � `

K

(� y)P

`

�!

C

Q with �; y :U `

K

P

`

�!

C

Q, ` an output

x

o

v and y 2 fn(`).

Case :mv(o). We have o 2 f?; "; ag and y 2 fn(v)� fn(x; o).

Suppose o 2 f?; "g. By
lause 1 of the indu
tion hypothesis for some K

0

; T

�; y :U ` x :
han

K

0

T

there exists � � t
((�; y :U); v; T) su
h that �; y :U;� ` Q :pro

K

C � K

0

By Lemma 42.1 � ` x :
han

K

0

T . By Lemma 44 �; y :U � t
(�; v; T). The

ase o = a, for
lause 4, is similar.

Case mv(o). We have o 2 f"; ag and y 2 fn(x; v) � fn(o).

Suppose o =". By
lause 2 of the indu
tion hypothesis for some K

0

; T

there exists � � t
((�; y :U);

h

x v

i

; h
han

K

0

T T i) su
h that �; y :U;� ` Q :pro

K

C � K

0

By Lemma 44 �; y :U � t
(�;

h

x v

i

; h
han

K

0

T T i). The
ase o = a, for
lause

3, is similar.

42

Input Consider the last pair of rules used:

(In)(In-?; ") Clause 5. Take K

0

= K. By t
(�; v; T) de�ned and Lemma 34 we have

t
(�; v; T) atomi
 and �; t
(�; v; T) ` v :T . It follows that � atomi
 and by

Lemma 46 �;� ` v :T . By Lemma 36 �;�;� ` f

v

=

p

g good. By the de�nition of

labelled transitions f

v

=

p

gP is well-de�ned so by Lemma 39 �;� ` f

v

=

p

gP :pro

K

.

By Lemma 40 �;� ` C Æf

v

=

p

gP :pro

K

.

(In)(In-a) Clause 6. Take K

00

= K. By the de�nition of labelled transitions f

v

=

p

gP is

well-de�ned so f

v

=

p

g is well-de�ned. As P tests all y :name 2 � and f

v

=

p

gP is de-

�ned 8y :name 2 � : f

v

=

p

gy is a name. By Lemma 37 t
(�; v; S) is well-de�ned,

ran(t
(�; v; S)) � fnameg, and �; t
(�; v; S);� ` f

v

=

p

g good. By Lemma 47

�;�;� ` f

v

=

p

g good. By Lemma 39 �;� ` f

v

=

p

gP :pro

K

. By Lemma 40

�;� ` C Æf

v

=

p

gP :pro

K

.

(Repl)(Repl-?; ") and (Repl)(Repl-a) Similar to the two
ases above.

(Box-2)(Box) Clause 7. Take K

0

= K. To
he
k �;� ` n[C :x

"

v j P ℄ :pro

K

observe

that �;� ` n :box

K

by weakening, pn(C : x

"

v j P) � C [pn(P) � K, and

fn(C :x

"

v j P) � fn(x; v) [fn(P) � dom(�;�).

(Stru
t),(*) 5{7 follow from the same
lauses of the indu
tion hypothesis and Lemma 45.

(*),(Spe
) 5{7 follow from the same
lauses of the indu
tion hypothesis and a use of

(Spe
) for Q.

(Par),(Par) Consider � `

K

P j P

0

`

�!

C

Q j P

0

with � `

K

P

`

�!

C

Q. 5{7 follow from

the same
lauses of the indu
tion hypothesis and a use of Lemma 42.3 for P

0

.

(Res-1)(Res) Consider � `

K

(� y)P

`

�!

C

(� y)Q with �; y :U `

K

P

`

�!

C

Q, ` an

input x

v and y 62 fn(`). Suppose
 2 f?; "g. By
lause 5 of the indu
tion

hypothesis for some K

0

, T �; y :U ` x :
han

K

0

T and

� � t
((�; y :U); v; T)

C � K

0

implies �; y :U;� ` Q :pro

K

. By y 62 fn(`) we have � ` x :
han

K

0

T . Now

suppose

� � t
(�; v; T)

C � K

0

By Lemma 42.2 t
(�; v; T) = t
((�; y :U); v; T) so by the impli
ation in the in-

du
tion hypothesis �; y :U;� ` Q :pro

K

, hen
e �;� ` (� y)Q :pro

K

. The
ase

of
 = a, for 7, is similar.

Now suppose
 = a. By
lause 6 of the indu
tion hypothesis for some K

0

� K

00

,

and S we have �; y :U ` a :box

K

0

, �; y :U ` x :
han

K

00

S, t
((�; y :U); v; S) well-

de�ned, and ran(t
((�; y :U); v; S)) � fnameg. Moreover

� � t
((�; y :U); v; S)

C � K

00

implies �; y :U;� ` Q :pro

K

.

As y 62 fn(`) the various strengthening results suÆ
e to show
lause 6.

43

Tau Consider the last pair of rules used:

(Comm)(Par) We have

� `

K

1

P

1

x

v

�!

C

P

0

1

� `

K

2

P

2

x

v

�!

C

P

0

2

� `

K

1

\K

2

P

1

j P

2

�

�!

;

(� fn(x; v) � dom(�))(P

0

1

j P

0

2

)

(Comm)

Consider
ases of
 and the
orresponding output and input
lauses:

Case ?; " 1,5. By the indu
tion hypotheses there exists � � t
(�; v; T) su
h

that �;� ` P

0

1

:pro

K

1

and �;� ` P

0

2

:pro

K

2

. By the (Par) and (Res)

typing rules � ` (� fn(x; v) � dom(�))(P

0

1

j P

0

2

) :pro

K

1

\K

2

.

Case a 4,6 By
lause 4 of the indu
tion hypothesis there exists � � t
(�; v;>)

su
h that �;� ` P

0

1

:pro

K

1

. By Lemma 35 t
(�; v;>) is the type
ontext

mapping ea
h x 2 fn(v)� dom(�) to name.

By
lause 4 C � K

0

and by
lause 6 K

0

� K

00

so C � K

00

.

By
lause 6 of the indu
tion hypothesis t
(�; v; S) is well-de�ned and has

range
ontained in fnameg, so t
(�; v; S) = t
(�; v;>), so � � t
(�; v; S),

so �;� ` P

0

2

:pro

K

2

.

By the (Par) and (Res) typing rules � ` (� fn(x; v)�dom(�))(P

0

1

j P

0

2

) :pro

K

1

\K

2

.

Case a 3,7 Similar to
ase ?; " above.

(Par)(Par) By the indu
tion hypothesis.

(Box-1)(Box) We have

dom(�) ` P

x

"

v

�!

C

Q

dom(�) ` n[P ℄

�

�!

;

(� fn(x; v) � dom(�))(C :x

n

v j n[Q℄)

(Box-1)

and

� ` n :box

K

pn(P) � K

fn(P) � dom(�)

� ` n[P ℄ :pro

K

(Box)

Note that we do not have � ` P :pro

K

, so the indu
tion hypothesis is not

appli
able.

Take � = t
(�;

h

x v

i

;>).

By weakening �;� ` n :box

K

. By Lemma 48 pn(Q) � K. In addition we have

fn(Q) � dom(�;�), so �;� ` n[Q℄ :pro

K

.

We have also �;� ` x :name, �;� ` v :> and (again by Lemma 48) C � K, so

�;� ` C :x

n

v :pro

K

.

By the (Par) and (Res) typing rules � ` (� fn(x; v)�dom(�))(C :x

n

v j n[Q℄) :pro

K

.

(Box-3)(Box) As a � transitions
annot in
rease the prin
ipal set or free name set of

a pro
ess.

(Res-1)(Res) By the indu
tion hypothesis.

44

(Stru
t)(*) Follows from the indu
tion hypothesis and Lemma 45.

(*)(Spe
) Follows from the indu
tion hypothesis and a use of (Spe
) for Q.

2

Proof (of Theorem 11) By � ` P :pro

K

and for some T andK, we get x :
han

K

T 2

�. Furthermore, we have � ` v :T and sin
e
 2 f?; "g we also have � ` p :T .

By Lemma 36 and the fa
ts that � atomi
, � ` v :T and ` p :T B �, we have

�;� ` f

v

=

p

g good. By Lemma 39 and the fa
ts that P does not
ontain a box,

�;� ` P

0

:pro

0

K

and �;� ` f

v

=

p

g good, we have f

v

=

p

gP is well-de�ned. 2

C.2 Proving Causal Flow for F

The proof that F has the
ausal
ow property is a straightforward indu
tion on the

tra
es of F(P;Q) using the Subje
t Redu
tion theorem.

Proof (of Theorem 13) Consider an instantiation F(P;Q) and
oloured tra
e

A ` ; ÆF(P;Q)

`

1

�!

C

1

R

1

: : :

`

k

�!

C

k

R

k

;

su
h that all inputs on in

1

in `

1

::`

k

are
oloured with p and all inputs on in

2

are

oloured with q.

By the de�nition of transitions (if k � 1) we have fn(F(P;Q)) � A.

Let �

0

be the type environment for in

1

, in

2

, out

1

, out

2

, from and to, as in the

statement of Theorem 12.

Let �

1

be the type environment mapping fn(P;Q) � dom(�

0

) to name and � =

�

0

;�

1

. Clearly � atomi
.

By the de�nition of instantiation we have fn(P;Q) � dom(�)� fa; bg.

By Theorem 12 � ` ; ÆF(P;Q) :pro

p

.

By F pure we know the `

j

have the form � , in

i

"

v, or out

i

"

v, for i 2 f1; 2g.

Take R

0

= ; ÆF(P;Q) and �

0

= ;. We now show by indu
tion on k that for all j 2

1::k `

j

= out

1

"

v =) q 62 C

j

and there exists �

j

atomi
 su
h that �;�

j

` R

j

:pro

p

.

Consider the transition R

k�1

`

k

�!

C

k

R

k

. We have �;�

k�1

atomi
, �;�

k�1

`

R

k�1

:pro

p

, and dom(�;�

k�1

) ` R

k�1

`

k

�!

C

k

R

k

, so

�;�

k�1

`

p

R

k�1

`

k

�!

C

k

R

k

Consider
ases of `

j

.

Case out

1

"

v. By Theorem 10 for some K

0

; T we have C

k

� K

0

and there exists � �

t
(�;�

k�1

;

h

out

1

v

i

; h
han

K

0

T T i) su
h that �;�

k�1

;� ` R

k

:pro

p

.

As t
(:::) is de�ned and out

1

:
han

p

> 2 � we have K

0

= fpg and T = >, so

C

k

� fpg, so q 62 C

k

.

Take �

k

= �

k�1

;�; it is
learly atomi
.

Case in

1

"

v. By Theorem 10 for some K

0

, T we have �;�

k�1

` in

1

:
han

K

0

T . If

moreover C

k

� K

0

and � � t
(�;�

k�1

; v; T) then �;�

k�1

;� ` R

k

:pro

p

.

As in

1

:
han

p

> 2 � we have K

0

= fpg and T = >. By the premises C

k

� fpg.

As T = > we have t
(�;�

k�1

; v; T) de�ned and atomi
; take � equal to this and

�

k

= �

k�1

;�.

45

The other
ases are similar. 2

Referen
es

[1℄ M. Abadi, A. Banerjee, N. Heintze, and J. G. Rie
ke. A
ore
al
ulus of de-

penden
y. In ACM, editor, POPL '99. Pro
eedings of the 26th ACM SIGPLAN-

SIGACT on Prin
iples of programming languages, January 20{22, 1999, San An-

tonio, TX, pages 147{160, New York, NY, USA, 1999. ACM Press.

[2℄ M. Abadi, C. Fournet, and G. Gonthier. Se
ure implementation of
hannel ab-

stra
tions. In LICS 98 (Indiana), pages 105{116. IEEE, Computer So
iety Press,

July 1998.

[3℄ R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-

hronous �-
al
ulus. In U. Montanari and V. Sassone, editors, Pro
eedings CON-

CUR 96, Pisa, Italy, volume 1119 of LNCS, pages 147{162, 1996.

[4℄ G. Ba
k, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau. Java operating

systems: Design and implementation. Te
hni
al Report UUCS-98-015, University

of Utah, Department of Computer S
ien
e, Aug. 6, 1998.

[5℄ M. Boreale and D. Sangiorgi. A fully abstra
t semanti
s for
ausality in the pi-

al
ulus. In E. W. Mayr and C. Pue
h, editors, Pro
eedings of STACS'95, volume

900 of Le
ture Notes in Computer S
ien
e, pages 243{254. Springer-Verlag, 1995.

[6℄ G. Boudol. Asyn
hrony and the �-
al
ulus (note). Rapport de Re
her
he 1702,

INRIA So�a-Antipolis, May 1992.

[7℄ S. Brookes, C. Hoare, and A. Ros
oe. A theory of
ommuni
ating sequential

pro
esses. Journal of the ACM, 31(3):560{599, 1984.

[8℄ L. Cardelli and A. D. Gordon. Mobile ambients. In Pro
. of Foundations of Soft-

ware S
ien
e and Computation Stru
tures (FoSSaCS), ETAPS'98, LNCS 1378,

pages 140{155, Mar. 1998.

[9℄ P. Degano and C. Priami. Causality for mobile pro
esses. In Z. F�ul�op and

F. G�e
seg, editors, Pro
eedings of ICALP '95, volume 944 of Le
ture Notes in

Computer S
ien
e, pages 660{671. Springer-Verlag, 1995.

[10℄ B. Ford, M. Hibler, J. Lepreau, P. Tullman, G. Ba
k, and S. Clawson. Mi
rokernels

meet re
ursive virtual ma
hines. In USENIX, editor, 2nd Symposium on Operating

Systems Design and Implementation (OSDI '96), O
tober 28{31, 1996. Seattle,

WA, pages 137{151, Berkeley, CA, USA, O
t. 1996. USENIX.

[11℄ C. Fournet, G. Gonthier, J.-J. L�evy, L. Maranget, and D. R�emy. A
al
ulus

of mobile agents. In Pro
eedings of CONCUR '96. LNCS 1119, pages 406{421.

Springer-Verlag, Aug. 1996.

[12℄ T. Fraser, L. Badger, and M. Feldman. Hardening COTS software with generi

software wrappers. In IEEE Symposium on Se
urity and Priva
y, Berkeley, Cali-

fornia, May 1999.

46

[13℄ D. P. Ghormley, S. H. Rodrigues, D. Petrou, and T. E. Anderson. Interposi-

tion as an operating system extension me
hanism. Te
hni
al Report CSD-96-920,

University of California, Berkeley, Apr. 9, 1997.

[14℄ N. Glew and G. Morrisett. Type-safe linking and modular assembly language. In

ACM, editor, POPL '99. Pro
eedings of the 26th ACM SIGPLAN-SIGACT on

Prin
iples of programming languages, January 20{22, 1999, San Antonio, TX,

pages 250{261, New York, NY, USA, 1999. ACM Press.

[15℄ I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A se
ure environment for

untrusted helper appli
ations. In Sixth USENIX Se
urity Symposium, San Jose,

California, July 1996.

[16℄ L. Gong. Java se
urity ar
hite
ture (JDK 1.2). Te
hni
al report, JavaSoft, July

1997. Revision 0.5.

[17℄ N. Heintze and J. G. Rie
ke. The SLam
al
ulus: Programming with se
re
y and

integrity. In Pro
eedings of the 25th POPL, Jan. 1998.

[18℄ M. Hennessy and J. Riely. Information
ow vs resour
e a

ess in the asyn
hronous

pi-
al
ulus (extended abstra
t). In Pro
eedings of the 27th ICALP, LNCS 1853,

pages 415{427, July 2000.

[19℄ K. Honda and M. Tokoro. An obje
t
al
ulus for asyn
hronous
ommuni
ation. In

P. Ameri
a, editor, Pro
eedings of ECOOP '91, LNCS 512, pages 133{147, July

1991.

[20℄ K. Honda, V. Vas
on
elos, and N. Yoshida. Se
ure information
ow as typed

pro
ess behaviour. In Pro
eedings of ESOP 2000, 2000.

[21℄ N. Islam, R. Anand, T. Jaeger, and J. R. Rao. A
exible se
urity system for using

Internet
ontent. IEEE Software, 14(5):52{59, Sept./O
t. 1997.

[22℄ M. B. Jones. Interposition agents: Transparently interposing user
ode at the

system interfa
e. In J. Vitek and C. Jensen, editors, Se
ure Internet Programing:

Se
urity Issues for Mobile and Distributed Obje
ts. Springer Verlag, 1999.

[23℄ M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network pump. IEEE Transa
tions

on Software Engineering, 22(5):329{338, May 1996.

[24℄ X. Leroy and F. Rouaix. Se
urity properties of typed applets. In Conferen
e Re
ord

of POPL '98: The 25th ACM SIGPLAN-SIGACT Symposium on Prin
iples of

Programming Languages, pages 391{403, San Diego, California, 19{21 Jan. 1998.

[25℄ J. M
Lean. Se
urity models. In J. Mar
iniak, editor, En
y
lopedia of Software

Engineering. Wiley & Sons, 1994.

[26℄ R. Milner, J. Parrow, and D. Walker. A
al
ulus of mobile pro
esses, Parts I +

II. Information and Computation, 100(1):1{77, 1992.

[27℄ G. C. Ne
ula and P. Lee. Safe, untrusted agents using proof-
arrying
ode. In

G. Vigna, editor, Mobile Agents and Se
urity, volume 1419 of LNCS, pages 61{91.

SV, 1998.

47

[28℄ J. Palsberg and P. �rb�k. Trust in the lambda-
al
ulus. Journal of Fun
tional

Programming, 7(6):557{591, November 1997.

[29℄ B. C. Pier
e and D. N. Turner. Pi
t: A programming language based on the

pi-
al
ulus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and

Intera
tion: Essays in Honour of Robin Milner. MIT Press, 1999.

[30℄ J. Riely and M. Hennessy. A typed language for distributed mobile pro
esses. In

Pro
eedings of the 25th POPL, Jan. 1998.

[31℄ A. Sabelfeld and D. Sands. A PER model of se
ure information
ow in sequential

programs. In Pro
eedings of European Symposium on Programming, Amsterdam,

Netherlands, Mar
h 1999.

[32℄ P. Sewell. Global/lo
al subtyping and
apability inferen
e for a distributed �-

al
ulus. In Pro
eedings of ICALP '98, LNCS 1443, pages 695{706, 1998.

[33℄ P. Sewell. Applied � { a brief tutorial. Te
hni
al Report 498, Computer Labora-

tory, University of Cambridge, Aug. 2000.

[34℄ P. Sewell and J. Vitek. Se
ure
omposition of inse
ure
omponents. Te
hni
al

Report 463, Computer Laboratory, University of Cambridge, Apr. 1999.

[35℄ P. Sewell and J. Vitek. Se
ure
omposition of inse
ure
omponents. In Pro
eed-

ings of the 12th IEEE Computer Se
urity Foundations Workshop (CSFW-12),

Mordano, Italy, June 1999.

[36℄ P. Sewell and J. Vitek. Se
ure
omposition of untrusted
ode: Wrappers and

ausality types. Te
hni
al Report 478, Computer Laboratory, University of Cam-

bridge, Nov. 1999.

[37℄ P. Sewell and J. Vitek. Se
ure
omposition of untrusted
ode: Wrappers and

ausality types. In Pro
eedings of CSFW 00: The 13th IEEE Computer Se
urity

Foundations Workshop., pages 269{284. IEEE Computer So
iety, July 2000.

[38℄ P. Sewell, P. T. Woj
ie
howski, and B. C. Pier
e. Lo
ation-independent
om-

muni
ation for mobile agents: a two-level ar
hite
ture. In Internet Programming

Languages, LNCS 1686. Springer-Verlag, O
t. 1999.

[39℄ G. Smith and D. Volpano. Se
ure information
ow in a multi-threaded imperative

language. In Conferen
e Re
ord of POPL '98: The 25th ACM SIGPLAN-SIGACT

Symposium on Prin
iples of Programming Languages, pages 355{364, San Diego,

California, 19{21 Jan. 1998.

[40℄ J. Vitek and G. Castagna. Towards a
al
ulus of mobile
omputations. In Work-

shop on Internet Programming Languages, Chi
ago, May 1998.

[41℄ J.-L. Vivas and M. Dam. From higher-order pi-
al
ulus to pi-
al
ulus in the

presen
e of stati
 operators. In D. Sangiorgi and R. de Simone, editors, CONCUR

'98: Con
urren
y Theory (9th International Conferen
e, Ni
e, Fran
e), volume

1466 of ln
s, pages 115{130. sv, Sept. 1998.

[42℄ D. Volpano and G. Smith. Con�nement properties for programming languages.

SIGACT News, 29(3):33{42, Sept. 1998.

48

[43℄ D. Volpano, G. Smith, and C. Irvine. A sound type system for se
ure
ow analysis.

Journal of Computer Se
urity, 4(3):1{21, 1996.

[44℄ D. S. Walla
h, D. Balfanz, D. Dean, and E. W. Felten. Extensible se
urity ar-

hite
tures for Java. In Pro
eedings of the 16th Symposium on Operating System

Prin
iples, 1997.

[45℄ G. Winskel and M. Nielsen. Models for
on
urren
y. In Abramsky, Gabbay, and

Maibaum, editors, Handbook of Logi
 in Computer S
ien
e, volume IV, pages

1{148. Oxford University Press, 1995.

[46℄ S. Zdan
ewi
, D. Grossman, and G. Morrisett. Prin
ipals in programming lan-

guages: A synta
ti
 proof te
hnique. In International Conferen
e on Fun
tional

Programming, Paris, Fran
e, September 1999.

49

