
Staged Compilation with Module Functors

TSUNG-JU CHIANG, University of Toronto, Canada

JEREMY YALLOP, University of Cambridge, United Kingdom

LEO WHITE, Jane Street Capital, United Kingdom

NINGNING XIE, University of Toronto, Canada

Multi-stage programming has been used in a wide variety of domains to eliminate the tension between

abstraction and performance. However, the interaction of multi-stage programming features with features for

programming-in-the-large remains understudied, hindering the full integration of multi-stage programming

support into existing languages, and limiting the e�ective use of staging in large programs.

We take steps to remedy the situation by studying the extension ofMacoCaml, a recent OCaml extension that

supports compile-time code generation viamacros and quotations, with module functors, the key mechanism in

OCaml for assembling program components into larger units. We discuss design choices related to evaluation

order, formalize our calculus via elaboration, and show that the design enjoys key metatheoretical properties:

syntactic type soundness, elaboration soundness, and phase distinction. We believe that this study lays a

foundation for the continued exploration and implementation of the OCaml macro system.

CCS Concepts: • Software and its engineering →Macro languages;Modules / packages; Source code

generation; Functional languages; Semantics; • Theory of computation→ Type theory.

Additional Key Words and Phrases: Staging, Macros, Modules, Compile-time code generation, OCaml

ACM Reference Format:

Tsung-Ju Chiang, Jeremy Yallop, LeoWhite, and Ningning Xie. 2024. Staged Compilation with Module Functors.

Proc. ACM Program. Lang. 8, ICFP, Article 260 (August 2024), 35 pages. https://doi.org/10.1145/3674649

1 Introduction

Multi-stage programming, implemented in a variety of programming languages [Calcagno et al.
2003; Kiselyov 2014; Kovács 2022; Rompf and Odersky 2010; Sheard and Jones 2002; Syme 2006; Taha
et al. 1998; Xie et al. 2022], is a widely-used approach to program generation. Program generation is
the leading approach to resolving the tension between abstraction and performance, and language
support for multi-stage programming often provides additional guarantees (e.g. that well-typed
generating programs generate only well-scoped and well-typed code).

MacoCaml [Xie et al. 2023] is a recent extension to the OCaml language that supports compile-
time multi-stage programming by combining a notion of macros with phase separation and
quotation-based staging. The following code shows the classic power example of staging de�ned
as a macro in MacoCaml (the syntax of MacoCaml will be explained in more detail in §2.1):

macro rec mpower n x = (* int → int expr → int expr *)

if n = 0 then << 1 >> else << $x * $(mpower (n - 1) x)>>

Authors’ Contact Information: Tsung-Ju Chiang, University of Toronto, Toronto, Canada, tsungju.chiang@mail.utoronto.

ca; Jeremy Yallop, University of Cambridge, Cambridge, United Kingdom, jeremy.yallop@cl.cam.ac.uk; Leo White, Jane

Street Capital, London, United Kingdom, lwhite@janestreet.com; Ningning Xie, University of Toronto, Toronto, Canada,

ningningxie@cs.toronto.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/8-ART260

https://doi.org/10.1145/3674649

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0003-1252-6424
HTTPS://ORCID.ORG/0009-0002-1650-6340
HTTPS://ORCID.ORG/0009-0003-7046-3035
HTTPS://ORCID.ORG/0000-0002-5961-1493
https://doi.org/10.1145/3674649
https://orcid.org/0000-0003-1252-6424
https://orcid.org/0009-0002-1650-6340
https://orcid.org/0009-0003-7046-3035
https://orcid.org/0000-0002-5961-1493
https://doi.org/10.1145/3674649

260:2 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

Intuitively speaking, mpower calculates G= e�ciently for any �xed n by unrolling and inlining all
recursive calls, with help from the staging annotations for quotation (<<>>) and splicing ($). For
example, $(mpower 3 <<2>>) generates (2 * (2 * (2 * 1))) at compile-time, which then calculates
23 e�ciently at run-time. Moreover, MacoCaml supports macros inside modules. For example,
mpower can be put inside a module P and later used as P.mpower.

However, MacoCaml does not support module functors, i.e. functions from modules to modules.
Since all OCaml code resides within modules, functors are a key abstraction mechanism: they allow
any de�nition — of a function, a class, a datatype, etc.— to be parameterized by any other de�nition.
Since macros also reside within modules in MacoCaml, extending MacoCaml with functor support
enables parameterizing macros by arbitrary OCaml de�nitions, and other de�nitions by macros,
signi�cantly increasing the expressive power and usefulness of macros.

Supporting functors with compile-time code generation involves new challenges: functors may
include compile-time computations that depend on macros provided by their arguments; the
computations cannot be evaluated before the macros are provided. Consider the following program:

module F(M : struct macro mpower : int → int expr → int expr end) = struct

let x = $(M.mpower 3 <<2>>) (* how to expand? *)

end

In this de�nition we do not know how to expand $(mpower 3 <<2>>), since mpower is a macro from
the functor argument M which has not yet been provided. Only when the functor F is applied, as
F(P), do we know that M is bound to P.
The remainder of this paper presents our answer to these challenges in the form of a language

design that combines compile-time code generation and module functors. It is structured as follows:

• §2 presents a language design that provides a principled approach to combining functors and
compile-time code generation by integrating functors with MacoCaml’s macros.

• §3 formalizes a source calculus<02>� with macros, quotation based staging, modules, functors,
and references. Being feature-rich,<02>� provides a foundation for our design to be integrated
into a full-scale language.

• §4 presents a compilation target calculus<02>�2>A4 , which enforces phase separation between
modules and structures living in di�erent phases. We prove syntactical type soundness.

• §5 presents an elaboration of<02>� calculus to<02>�2>A4 , with compile-time code generation
and explicit compile-time heaps. The elaboration extends Xie et al. [2023] in several signi�cant
ways in order to support functors and functor applications.

• §6 establishes desirable properties of elaboration, including (a) elaboration soundness from
<02>� to <02>�2>A4 (Theorem 6.1); namely, well-typed source programs generate well-typed
core programs; (b) phase distinction (Theorem 6.2); namely, compile-time computations do not
interfere with run-time computations; and (c) elaboration preserves semantics (Theorem 6.3).

• §7 considers the extension of<02>� with module imports and module subtyping.
• §8 envisions the integration of our design into MacoCaml, discussing practical considerations
around compilation and optimization.

• Lastly, §9 surveys related work and §10 concludes.

Our formalism is detailed; for space reasons, some rules are left to the appendix. This work focuses
on OCaml, but we hope it also sheds light on type-safe compile-time code generation for other
languages.

2 Overview

This section reviews the key features of MacoCaml [Xie et al. 2023] (§2.1), discusses the challenges
of combining compile-time evaluation and module functors (§2.2), and presents our design (§2.3).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:3

2.1 Background: Compile-Time Code Generation in MacoCaml

Consider the following power function that takes n and x, and returns the value of G= .

let rec power n x = if n = 0 then 1 else x * (power (n - 1) x) (* int → int → int *)

The power function is a typical example used to motivate code generation as an approach to
eliminating run-time overhead: while power can take any n, it involves run-time overhead for each
recursive call. For example, power 5 2 recurses 5 times before it returns 32.

Programming with staging and macros. To balance abstraction and e�ciency, MacoCaml [Xie
et al. 2023] combines quotation-based staging [Sheard and Jones 2002; Taha et al. 1998] and a notion
of macros with phase separation [Flatt 2002] for compile-time code generation. Speci�cally, we can
de�ne a macro version of the power function as:

macro rec mpower n x = (* int → int expr → int expr *)

if n = 0 then << 1 >> else << $x * $(mpower (n - 1) x)>>

Before explaining the syntax, we show that we can now de�ne a specialized power function such
as power5 with n being 5. At compile-time, all recursive calls to mpower will be unrolled and inlined,
generating the de�nition for power5 given in the comment:

let power5 x = $(mpower 5 <<x>>) (* power5 x = x * (x * (x * (x * (x * 1)))) *)

Now calling power5 2 generates the same result 32 as before, but with less run-time overhead.

Let de�nitions, macros, and staging. We now explain how let de�nitions, macros, and staging
annotations work together in MacoCaml. The key ideas are:

• The quotation annotation <<e>> delays a computation e’s evaluation by turning it into its code
expression, while the splice annotation $(e) forces evaluation of a code expression e. From a
typing perspective, if e has type t then <<e>> has type t expr, where expr is the type constructor
for code expressions. Dually, if e has type t expr, then $(e) has type t.

• In let de�nitions, we can splice macro-de�ned identi�ers, while in macro de�nitions, we can
quote let-de�ned identi�ers. For local variables such as x there must be the same number of
quotations as splices between the variable’s binding site and its use site.

• Top-level splices (i.e. splices not surrounded by any quotations) are evaluated at compile-time.

In the example above, the top-level splice causes mpower 5 <<x>> to be evaluated to generate the
de�nition of power5 at compile-time.

Levels. More formally, de�nitions and staging are managed through the notion of a level. Roughly
speaking, for an expression, its level is de�ned as the integer given by the number of quotes
surrounding it minus the number of splices. Intuitively, levels correspond to the evaluation phase of
an expression, where expressions of negative levels are evaluated at compile-time, while expressions
of level 0 are evaluated at run-time.1

Let de�nitions and macros are then simply de�nitions at di�erent levels: let de�nitions are
type-checked and bound at level 0, while macros are type-checked and bound at level -1.2

Typing is then associated with a level. To type-check <<e>> at level =, we type-check e at level
= + 1; and to type-check $(e) at level =, we type-check e at level = − 1. A local variable (such as x)
is associated with the level at which it is introduced.

1In the literature, work on staged programming (e.g. Xie et al. [2022]) often refers to level 0 as run-time and positive levels

as future stages, while work on macros (e.g. Flatt [2002]) uses phase 1 as compile-time and phase 0 as runtime. To reduce

confusion, in this work we use levels as a syntactic notion, and use compile-time and run-time for evaluation phases.
2We remark that the term macro in the context of MacoCaml means compile-time bindings, which di�ers from macros in

systems like Racket; see Xie et al. [2023] for more discussion.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:4 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

module type MONOID = sig

type t

val one : t

val mul : t → t → t

val show : t → string

end

module R(M : MONOID) = struct

let rec rpower n x = (* int → M.t → M.t *)

if n = 0 then M.one

else M.mul x (rpower (n - 1) x)

let show_power5 x = M.show (rpower 5 x)

end

Fig. 1. A module functor

The type system ensures well-stagedness by enforcing the level restriction: a identi�er or a variable
can only be used at the level at which it is bound. As an example, in both power and power5, variables
n and x are used at the level at which they are bound. The level restriction ensures that compile-time
code generation does not depend on a value that is only known at run-time. In power5, the argument
n is provided at compile-time, while x is provided at run-time, and the compile-time evaluation of
mpower 5 <<x>> does not depend on the value of x.
To summarize, MacoCaml provides a unifying framework for macros and staging. MacoCaml

also supports side-e�ects with references, modules, and module imports. We refer the reader to Xie
et al. [2023] for more detailed explanations and discussion.

2.2 Combining Compile-Time Computations with Functors

However, MacoCaml does not yet supportmodule functors. In this sectionwe illustrate the di�culties
of combining compile-time computations and functors.

Functors. A functor in OCaml is a parameterized module taking a module as an input and
producing a module as output. Functors are used to abstract over module dependencies and
assemble programs from typed components. Fig. 1 presents a signature MONOID of monoid values,
which contains a type t, and de�nitions one, mul, and show.

We can then generalize the power function (§2.1), previously limited to integers, to rpower that
works over a monoid. Speci�cally, the functor R on the right of Fig. 1 takes a MONOID module as an
input, and returns a module containing a rpower function de�ned using M.one and M.mul. To get
the original power function for integers, we can de�ne an Int module and apply R to Int.

module Int = struct type t = int

let one = 1

let mul = (*)

let show = string_of_int end

module RInt = R(Int) (* RInt.rpower : int → int → int *)

However, this introduces a level of indirection, as RInt.rpower is a function resulting from a run-time
functor application. We hope to eliminate the overhead using macros.

Compile-time computations in functors. Since MacoCaml supports macros inside modules, we
may naturally want to generate the de�nition of rpower at compile-time for any speci�c monoid.
To this end, envisaging an extension of MacoCaml to functors, we de�ne one and mul to be macro
members in MONOID, which get spliced inside the functor F (Fig. 2)

Note that type signatures of one and mul now take and return exprs. In the de�nition of functor
F, the function fpower splices M.one and M.mul, so that they both get expanded at compile-time.
Then, given an Int module with macro members, we would like to apply F to Int and generate at
compile-time a fpower function that expands to exactly the integer-speci�c power de�nition (Fig. 3).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:5

module type MONOID = sig

type t

macro one : t expr

macro mul : t expr → t expr → t expr

val show : t → string

end

module F(M : MONOID) = struct

(* int → M.t → M.t *)

let rec fpower n x =

if n = 0 then $(M.one)

else $(M.mul <<x>> <<fpower (n - 1) x>>)

let show_power5 x = M.show (fpower 5 x)

end

Fig. 2. Compile-time computations inside a functor

module Int = struct type t = int

macro one = <<1>>

macro mul x y = << $(x) * $(y) >>

let show = string_of_int end

module FInt = F(Int) (* let rec fpower n x = if n = 0 then 1

else x * (fpower (n-1) x) *)

Fig. 3. Functor application with macros

Unfortunately, MacoCaml does not yet support macros either in functor arguments or functor
bodies, so the program does not work. Furthermore, combining functors and MacoCaml’s facilities
for compile-time code generation is not entirely trivial. In particular, in MacoCaml top-level splices
are evaluated at compile-time, but when F (Fig. 2) is compiled its argument M has not been provided,
so it is not possible to evaluate $(M.one) (or $(M.mul ...)) in its body. It is only when M is instantiated
with Int in the functor application F(Int) above that these de�nitions become available. More
generally, the functor F can be applied multiple times, and thus may generate di�erent run-time
versions of fpower depending on the module argument M.

2.3 Our Approach

In this section, we present our key design that combines functors and macros. Along the way we
explore the design space. We discuss practical considerations in §8.

Macros inside functors. What makes the de�nition of the functor F tricky in Fig. 2? We would like
to evaluate the top-level splice $(M.mul ...), but its evaluation depends on the macro de�nition
from the functor argument M, which is not available when F is type-checked.

Our approach is to provide a design for functors that makes reasoning easy. That is,

Design Choice 1. Top-level splices do not evaluate inside functors.

Thus, the top-level splice in Fig. 2 does not evaluate.
This design does not only prevent evaluation in cases where dependencies make evaluation

impossible. For example, it also prevents the following top-level splice from evaluating, even though
the expression in the splice does not depend on macros from the functor argument.

module H(M : MONOID) = struct

macro rec mpower n x = ...

let power5 = fun x → $(mpower 5 <<x>>) (* no expansion *)

end

This is not the only possible design: we could instead evaluate top-level splices that do not depend on
macros from the functor argument. However, this alternative design is sensitive to code refactoring,

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:6 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

as any code changemay introduce a dependency on the functor argument in a top-level splice, which
then again blocks the top-level splice from evaluation, potentially causing surprising and unexpected
results for programmers. For instance, in the example above, we might change the expression
inside the top-level splice to $(mpower 5 (M.mul <<x>> <<x>>)), which then cannot evaluate. Design
Choice 1 provides a uniform treatment of functors, making it easy for programmers to predict
when top-level splices will (or will not) be evaluated.

On the other hand, with Design Choice 1, one may worry that turning a module into a functor
changes the semantics of top-level splices. We believe that such a change is more expected and
also aligns with the fact that functors are treated as values in OCaml; for example, a let de�nition
such as let x = print_endline "hello" inside a structure will be evaluated when the structure is
evaluated, but the same de�nition inside a functor will not be evaluated until the functor is applied.

Functor applications. When do top-level splices inside a functor get evaluated, then? The answer
is: during compilation, at the point where the functor is applied.

Design Choice 2. Top-level splices inside a functor are evaluated during compilation at the point

where the functor is applied.

Applying this principle to our previous example with functor H, we expect H(Int) to expand power5.
This case is straightforward, since power5 does not actually depend on anything from M.

The example in Fig. 2, however, is more di�cult. Speci�cally, functor applications such as F(Int)
are not evaluated until run-time, but the top-level splices inside F need to happen at compile-time,
with M instantiated to Int in this case.

Our solution is to split a functor argument into two arguments, one static and one dynamic, and
evaluate the application to the static argument at compile-time:

F(Int_s)(Int_d)

compile-time

run-time

Correspondingly, we also split each module into a dynamic module and a static one:

module Int_s = struct type t = int

macro one = <<1>>

macro mul x y = << $(x) * $(y) >> end

module Int_d = struct let show = string_of_int end

Fig. 4. Split the module Int (Fig. 3)

More speci�cally, the functor argument Int is split into two modules, Int_s and Int_d, where
macros belong to the static module Int_s, while let de�nitions belong to the dynamic one Int_d.
We expect the application F(Int_s) to evaluate at compile-time, evaluating top-level splices in F,
and generating a functor that takes Int_d at run-time.

For this design to work out, we need to take care of a few details. First, how should we represent
the two modules from splitting a module, where the two modules can be mutually dependent,
as a macro can quote a let de�nition, and a let de�nition can splice a macro? We observe that
when a let de�nition splices a macro, the macro must be part of a top-level splice. Thus, after
compile-time evaluation, top-level splices have been evaluated and there will be no dependency
of macro de�nitions on let de�nitions. Therefore, we can put the dynamic module in scope when
typing the static part. While there will still be dependency from the dynamic module to the type

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:7

components in the static module, splitting a module with a type component has been studied
before [Harper et al. 1989]; in this work, we focus on concerns speci�c to macros.3

A more problematic question is: if FInt (i.e. F(Int_s)(Int_d) after splitting) is itself passed as an
argument to another functor, what should be the result of splitting FInt? In this particular case, F
(and thus FInt also) has no static components, but more generally, a functor may contain macro
de�nitions that may depend on macros as well as let de�nitions from its argument. To make the
point clear, we extend F with a macro showOne that uses M.show and M.one:

module F(M : MONOID) = struct

... (* same as before *)

macro showOne () = <<M.show $(M.one)>>

end

FInt = F(Int) (* with the extended F *)

Fig. 5. Extend functor F (Fig. 2) with a macro

To split FInt into a static and a dynamic module, clearly we cannot just leave the result of
F(Int_s)(Int_d) to be a functor application F'(Int_d), where F' is the result of F(Int_s). We
still need to look inside F' to retrieve its macro and let de�nitions. That is, we expect to split Fint
also into two modules:

module FInt_s = struct

macro showOne () = <<Int_d.show $(Int_s.one) >> (* Int_s and Int_d inlined *)

end

module FInt_d = struct

let rec fpower n x = if n = 0 then 1 else x * fpower (n - 1) x (* Int_s expanded *)

let show_power5 x = Int_d.show (fpower 5 x) (* Int_d inlined *)

end

Fig. 6. Split functor application FInt with F extended with macros (Fig. 5)

To this end, we do not only evaluate F(Int_s), but also inline (without expanding or evaluating)
the application to Int_d at compile-time. This is su�cient, as the functor F needs the values of
macros from Int_s for compile-time evaluation, while it needs only the names of the let de�nitions
from Int_d. Speci�cally, Int_s.one and Int_s.mul have both been expanded during compile-time
evaluation of fpower, while Int_d.show appears in the result but its de�nition is not needed. By
evaluating the application to Int_s and inlining the application to Int_d, we can successfully split
FInt into Fig. 6 so that it can also be provided as an argument to another functor.

Functor applications to anonymous modules. As described above, for functor applications, we
would like to split the module argument into a static and a dynamic module, evaluate the application
to the static part, and inline the application to the dynamic part. However, the design does not take
into consideration the case when the functor argument is an anonymous module, rather than a
variable, in which case inlining is problematic. As an example, consider

3Intuitively speaking, we may split a module into three modules, one with only type components, one with macros, and the

other with let de�nitions.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:8 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

module FPrintShow = F(struct

type t = int;; macro one = <<1>>;; macro mul x y = << $(x) * $(y) >>

let show = print_endline "show"; string_of_int

end)

The main di�erence between this module argument and the previous Int (Fig. 3) module is that the
argument here is an anonymous module, and also show has a side e�ect. Splitting the argument
into a static one and a dynamic one, we have the dynamic one include the show. If show is used in F

multiple times, then naively inlining it will cause "show" to be wrongly printed multiple times. A
similar and slightly worse example is when a de�nition in the dynamic part creates a reference, in
which case the reference will get wrongly duplicated, changing the semantics of the program.

Moreover, anonymous modules also causes another problem. Consider that the user wants to
splice showOne from FPrintShow and observe the code generated:

$(FPrintShow.showOne ()) (* ???.show 1 *)

The generated program contains a reference to show. However, show is a function from the anony-
mous module and there is no way to refer to the anonymous module after the functor has been
applied. How, then, can we print the generated program?

We resolve both problems by inserting the module argument as an additional module de�nition,
which is given a fresh module name. This leads to our last design choice:

Design Choice 3. Module arguments are inserted as additional module de�nitions.

In the above example, we insert the anonymous module argument as an additional module, say
Anon, which is then split into a static module Anon_s and Anon_d. The functor application becomes
F(Anon_s)(Anon_d), where the application to Anon_s gets evaluated, and Anon_d gets inlined.
We also need to expose the additional modules alongside FPrintShow, so that the generated

program may refer to components of those modules (even though the modules themselves cannot
be directly accessed by the user). Moreover, observe that the generated program can only ever refer
to the dynamic part (in this case M.show) from the module arguments, but not the static part (in this
case M.one, which has been expanded to 1). We therefore only need to expose the dynamic part,
not the static part, of those modules.
In the formalism that follows, we concretize Design Choice 3 in two ways. First, we insert the

dynamic part of an anonymous module argument as an additional module. Again, the programmer
cannot directly refer to the components of these modules; they are accessible only in code generated
by compile-time computations. Second, we locally bind the static part of the argument to the functor
body. For the example above, we will generate:

module Anon_d = struct let show = print_endline "show"; string_of_int end

Therefore

$(FPrintShow.showOne ()) (* Anon_d.show 1 *)

Summary. This section used examples to explain our key design that combines macros, compile-
time computations, and functors. Fig. 7 shows the relations between the main code fragments
presented in this section. The rest of the paper formalizes our design as a source calculus<02>� (§3)
which elaborates to a target calculus<02>�2>A4 (§4). §8 discusses practical aspects of compilation.

3 A Macro Calculus with Staging and Module Functors

This section presents<02>� , a macro calculus featuring staging andmodule functors. Our formalism
is built on top of and thus shares syntax and judgments with the one in Xie et al. [2023], with the

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:9

without macros

with macros

MONOID (Fig. 1) R (Fig. 1)

MONOID (Fig. 2) F (Fig. 2) showOne
(Fig. 5)

Int (Fig. 3) FInt (Fig. 3)

Int_s
(Fig. 4)

Int_d
(Fig. 4)

FInt_s
(Fig. 6)

FInt_d
(Fig. 6)

type

apply

apply

extend

split split

Fig. 7. Relations between main code fragments presented in §2

key extension being functors and functor applications, the main contribution of this work. We omit
type de�nitions in the formalism, as they are largely orthogonal to our main focus. We discuss
other extensions such as module imports in §7.

3.1 Syntax

Fig. 8 presents the syntax of<02>� . A module expression M can be a plain structure structS end,
a module variable" , a module variable under path ?." , a functor abstraction functor(" : Δ). M,
or a functor application M1 M2. We use S to denote a sequence of structure items, which may
be empty (•), or include module de�nitions mod" : Δ = M, let de�nitions def : = 4 , and

macros def↓< = _x : g . 4 that are always functions. We use def and def↓ (instead of let and
macro) to highlight that they are essentially de�nitions at di�erent levels; let de�nitions are always
typed at level 0 (run-time), and macros are typed at level −1 (compile-time). A module path ? is a
dot-separated sequence of module names which resolves to a module.
The term-level syntax is a lambda calculus extended with unit and integer types, mutable

references, and staging constructs. An expression 4 can take the form of an integer literal 8 , a unit
unit, a variable x, an abstraction _x : g . 4 , or an application 41 42. Let de�nitions and macros are
referenced by : and< respectively, and may be quali�ed by a path ? . Mutable references can be
created by ref 4 , dereferenced by !4 , and assigned by 41 := 42. Lastly, ⟨4⟩ quotes an expression into a
piece of code, and $4 splices a code expression into the current stage.
A module type Δ is either an enclosed structure type sigq end or a functor type Δ1 → Δ2. A

structure type q is a sequence of module types" : Δ, let de�nition types : : g , and macro types
< : g . Types g include the integer type Int, the unit type Unit, functions g1 → g2, references Ref g ,
and code type Codeg . In this work we focus on references for integers, i.e. Ref Int, as the main
purpose of references is to model compile-time side-e�ects.
A type context Γ maps a module, a de�nition, and a macro to its type, and a local variable x to

its type and level.

3.2 Typing Rules

Fig. 9 and 10 present the typing rules for modules, structures, and expressions in the source calculus.

Typing modules and structures. The typing judgments are mostly standard. The judgment Γ ⊢

M : Δ reads that under the typing context Γ, the moduleM has module type Δ. Rule m-struct
type-checks a structure. Rule m-var retrieves the type of a module variable from the context.
Rule m-pmvar gets the type of the module variable under a path. Note that paths are syntactically
a subset of modules, and thus paths can be typed using the same judgment. The rule then gets

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:10 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

module M F structS end | " | ?." | functor(" : Δ). M | M1 M2

structure items S F • | mod" : Δ = M;S | def : = 4;S | def↓< = _x : g . 4;S

path ? F " | ?."

expression 4 F 8 | unit | x | _x : g . 4 | 41 42 | : | ?.: | < | ?.<

| ref 4 | !4 | 41 := 42 | ⟨4⟩ | $4

module type Δ F sigq end | Δ1 → Δ2

structure type q F • | " : Δ;q | : : g ;q | < : g ;q

type g F Int | Unit | g1 → g2 | Ref g | Codeg

context Γ F • | Γ, " : Δ | Γ, : : g | Γ,< : g | Γ, x : (g, =)

Fig. 8. Syntax in the source calculus<02> .

Γ ⊢ M : Δ (Typing module)

m-struct

Γ ⊢ S : q

Γ ⊢ structS end : sigq end

m-mvar

" : Δ ∈ Γ

Γ ⊢ " : Δ

m-pmvar

Γ ⊢ ? : sigq end " : Δ ∈ q

Γ ⊢ ?." : Δ
m-functor

Γ, " : Δ1 ⊢ N : Δ2

Γ ⊢ functor (" : Δ1).N : Δ1 → Δ2

m-app

Γ ⊢ F : Δ1 → Δ2 Γ ⊢ M : Δ1

Γ ⊢ F M : Δ2

Γ ⊢ S : q (Typing structure)

st-empty

Γ ⊢ • : •

st-def

Γ ⊢0 4 : g Γ, : : g ⊢ S : q

Γ ⊢ (def : = 4;S) : (: : g ;q)

st-macro

Γ ⊢−1 4 : g Γ,< : g ⊢ S : q

Γ ⊢ (def↓< = 4;S) : (< : g ;q)
st-module

Γ ⊢ M : Δ Γ, " : Δ ⊢ S : q

Γ ⊢ (mod" : Δ = M;S) : (" : Δ;q)

Fig. 9. Typing of modules and structures

Γ ⊢= 4 : g (Typing expression (excerpt))

qote

Γ ⊢=+1 4 : g

Γ ⊢= ⟨4⟩ : Codeg

splice

Γ ⊢=−1 4 : Codeg

Γ ⊢= $4 : g

kvar

: : g ∈ Γ

Γ ⊢0 : : g

macro

< : g ∈ Γ

Γ ⊢−1 < : g

var

x : (g, =) ∈ Γ

Γ ⊢= x : g

Fig. 10. Typing rules of expressions

the type of the module variable" from the path ? . Rule m-functor adds the type of the module
argument" : Δ1 to the context to type-check the body N . For rule m-app, the �rst premise checks
the type of F and the second one checks M.

The judgment Γ ⊢ S : q reads that under the typing context Γ, the structure S has structure type
q . Most rules are self-explanatory. Rule st-def and st-macro type-check let-de�nitions and macro
de�nitions at level 0 and -1, respectively.

Typing expressions. For space reasons, we present only selected typing rules for staging-related
constructs; the typing rules for other forms are standard. The judgment Γ ⊢= 4 : g reads that under
the type context Γ, the expression 4 has type g , at level =. Here we present selected rules. Ruleqote

says that if 4 has type g at level = + 1, then ⟨4⟩ has type Codeg at level =. Dually, rule splice is for
splices: if 4 has type Codeg at level = − 1, then $4 has type g at level =. Rule kvar and rule macro

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:11

state that let bound variables and macros can be used only at level 0 and −1, respectively. Rule var
captures the level restriction: a variable G can only be used at the level at which it is bound.

4 Compilation Target

The semantics of<02>� is provided through an elaboration to a core calculus<02>�2>A4 , during
which we evaluate top-level splices. In this section, we give an overview of the core calculus
<02>�2>A4 ; the elaboration will be presented later in §5. Intuitively speaking,<02>�2>A4 is a calculus
with explicit syntax for modules (and structures) at di�erent phases.

4.1 Syntax

Fig. 11 presents the syntax of the core calculus. We use colors to distinguish di�erent syntax.
Generally, symbols with di�erent colors refer to di�erent things, with the exception being core
expressions and contexts, where dynamic and static ones share the syntax.

Modules are separated into dynamic modules M3 and static modules MB . We color the modules
di�erently for clarity, though they share some syntax, especially expressions 4 . The dynamic
modulesM3 include dynamic structures structS3 end, module variables"3 , and quali�ed module
variables ?3 ."3 . We omit the de�nition for ?3 , which is a dot-separated sequence of dynamic module
names. The dynamic structures S3 are either empty (•), or contain dynamic module de�nitions"3

and let de�nitions : . Notably, the let de�nition has an extra syntactic condition 40 (explained in
§4.3), which ensures that de�nitions have no top-level splices after compilation.

On the other hand, static modules MB include static structures structSB end, module variables
"B , and quali�ed module variables ?B ."B , where ?B is a dot-separated sequence of static module
names. Additionally, static modules include functors ⟨Γ, functor(" : Δ). M⟩, which captures the
source context Γ4 and where the body of the functor is in the source syntax as it is not split yet.
Moreover, static modules include local module bindings let"B = MB inMB

′. The static structures
SB are either empty (•), or contain static module de�nitions"B and macro de�nitions<. The extra
syntactic condition E0 (§4.3) ensures that macros are bound to values that contain no top-level
splices. Notably, macros are always values after elaboration, as macros are functions, and there are
no top-level splices. As a result, static modules and structures are also always values, since they
contain only macro values and functors. (We could in principle substitute local module bindings,
but since bindings are already values we leave them in the program.) Note that there are no functor
applications in the syntax, as a functor application will have its static part reduced and the dynamic
part inlined during elaboration.

For both types of module, we have a notion of module sequences. The module list L and C are
a sequence of dynamic and static module variables, respectively. We write ↦→ for C to highlight
that static modules are always values. We also write [C]MB to mean a sequence of local module
de�nitions as in C followed by a module MB . For example, ["B 1 ↦→ MB 1;"B 2 ↦→ MB 2]MB means
let"B 1 = MB 1 in let"B 2 = MB 2 inMB

The expressions 4 are similar to the source expressions, but extended with locations ; (highlighted
in gray), which are the values of references.
Module types and structure types Δ3 , q3 , ΔB , and qB correspond to de�nitions of dynamic and

static modules and structures, respectively. Note that ΔB uses Δ1 → Δ2 as the type for functors, as
functors are not split. We omit types (g , g), as they are the same as types g in the source calculus.

4Having the source context with the functor makes it easy to type-check the functor (rule cs-m-functor). On the other

hand, since we will establish elaboration soundness, an elaborated module will always be well-typed, in which case we do

not have to capture the context but just assume that we work over well-typed core modules.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:12 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

dynamic module M3 F structS3 end | "3 | ?3 ."3

structure items S3 F • | mod"3 = M3 ;S3 | def : = 40;S3

path ?3 F "3 | ?3 ."3

module list L F • | mod"3 = M3 ;L

module type Δ3 F sigq3 end

structure type q3 F • | : : g ;q3 | " : Δ3 ;q3

static module MB F structSB end | "B | ?B ."B | ⟨Γ, functor(" : Δ). M⟩

| let"B = MB inMB
′

structure items SB F • | mod"B = MB ;SB | def
↓< = E0;SB

path ?B F "B | ?B ."B

module list C F • | "B ↦→ MB ;C

module type ΔB F sigqB end | Δ1 → Δ2

structure type qB F • | < : g ;qB | " : ΔB ;qB

expr 4, 4 F 8 | unit | x | _x : g . 4 | 41 42 | : | ?3 .: | < | ?B .<

| ref 4 | !4 | 41 := 42 | ⟨4⟩ | $4 | ;

context Γ, Γ F • | Γ, "3 : Δ3 | Γ, "B : ΔB | Γ, : : g | Γ,< : g | Γ, x : (g, =)

Fig. 11. Syntax of the core calculus<02>�2>A4 .

f Γ ⊢ M3 : Δ3 (Typing dynamic module)

cd-m-var

"3 : Δ3 ∈ Γ

f Γ ⊢ "3 : Δ3

cd-m-path

f Γ ⊢ ?3 : sigq3 end " : Δ3 ∈ q3

f Γ ⊢ ?3 ."3 : Δ3

cd-m-struct

f Γ ⊢ S3 : q3

f Γ ⊢ structS3 end : sigq3 end

f Γ ⊢ S3 : q3 (Typing dynamic structure)

cd-st-empty

f Γ ⊢ • : •

cd-st-def

f Γ ⊢0 4 : g f Γ, : : g ⊢ S3 : q3

f Γ ⊢ (def : = 4;S3) : (: : g ;q3)
cd-st-module

f Γ ⊢ M3 : Δ3 f Γ, "3 : Δ3 ⊢ S3 : q3

f Γ ⊢ (mod"3 = M3 ;S3) : ("3 : Δ3 ;q3)

Γ ⊢ MB : ΔB (Typing static module)

cs-m-var

"B : ΔB ∈ Γ

Γ ⊢ "B : ΔB

cs-m-path

Γ ⊢ ?B : sigqB end "B : ΔB ∈ qB

Γ ⊢ ?B ."B : ΔB

cs-m-struct

Γ ⊢ SB : qB

Γ ⊢ structSB end : sigqB end
cs-m-functor

Γ1 ⊢ functor (" : Δ1).N : Δ1 → Δ2

Γ ⊢ ⟨Γ1, functor(" : Δ1). N⟩ : Δ1 → Δ2

cs-m-local

Γ ⊢ MB : ΔB Γ, "B : ΔB ⊢ MB
′
: ΔB

′

Γ ⊢ let"B = MB inMB
′
: ΔB

′

Γ ⊢ SB : qB (Typing static structure)

cs-st-empty

Γ ⊢ • : •

cs-st-macro

• Γ ⊢−1 E : g Γ,< : g ⊢ SB : qB

Γ ⊢ (def↓< = E ;SB) : (< : g ;qB)

cs-st-module

Γ ⊢ MB : ΔB Γ, "B : ΔB ⊢ SB : qB

Γ ⊢ (mod"B = MB ;SB) : (" : ΔB ;qB)

Fig. 12. Typing rules for modules and structures

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:13

f Γ ⊢= 4 : g (Typing expression (excerpt))

c-qote

f Γ ⊢=+1 4 : g

f Γ ⊢= ⟨4⟩ : Codeg

c-splice

f Γ ⊢=−1 4 : Codeg

f Γ ⊢= $4 : g

c-kvar

: : g ∈ Γ

f Γ ⊢0 : : g

c-macro

< : g ∈ Γ

f Γ ⊢−1 < : g
c-var

x : (g, =) ∈ Γ

f Γ ⊢= x : g

c-loc

; ∈ f

f Γ ⊢= ; : Ref Int

Fig. 13. Typing rules for expressions

4.2 Typing

Fig. 12 and 13 present typing rules for modules, structures, and expressions in the core calculus.
The typing rules for dynamic modulesM3 and structures S3 are mostly straightforward, and

are very similar to the rules in the source calculus. The main di�erence is that since we have
locations, the typing judgments are associated with a heap f , de�ned in Fig. 14, which keeps track
of references and maps locations to values (see rule c-loc).
Interestingly, the typing judgments for static modules MB and structures SB are not associated

with heaps; as we will see in §6, there cannot be any reference to the compile-time heap after
elaboration. Also, since static modules and structures are values, they also do not evaluate. As such,
expressions in the static part will not refer to locations. Rule cs-m-functor type-checks functors
using the captured source context. Finally, rule cs-m-local type-checks local module bindings,
where we �rst type-checkMB , and put its type into the context to type-check NB . Note that the
type of MB is not returned in the result type. We also write f Γ ⊢ L : q3 (and Γ ⊢ C : qB) that
type-checks a list of modules and returns q3 (and qB).
The typing judgment for expressions is more standard; here we show the two rules for staging

constructs (rule c-qote and c-splice), the rules for identi�ers and variables (rule c-kvar, c-macro,
and c-var), and one for locations (rule c-loc), where a location is of type Ref Int, if the location
appears in f .

4.3 Dynamic Semantics

We now present the dynamic semantics of the core calculus. Since static modules and structures
are already values, we only need to evaluate dynamic modules and structures.

Fig. 14 presents the de�nition of module values and structure values. The evaluation environments
Ω3 and ΩB store de�nitions needed for run-time and compile-time evaluation respectively. We also
write Ω to stand for either Ω3 or ΩB , when the distinction does not matter or it is obvious from the
context which environment we refer to. We use light blue for heaps and evaluation environments
for better clarity later in the elaboration rules, as they are mostly simply threaded through.

Level-annotated expressions and values. Fig. 15 de�nes level-annotated expressions and values

[Calcagno et al. 2003; Taha et al. 1998]. The notation 4= means that 4 is an expression at level =,
with = ≥ 0. Notably, a splice $4 is an expression at only positive levels = + 1 (thus with = + 1 ≥ 1).
Thus, 40 in the dynamic structure items ensures that expressions do not have top-level splices.

Values E is a subset of expressions. The level-annotated values notation E= means that E is a value
at level =. Values E0 at level 0 include literals 8 , units unit, locations ; , and lambdas _x : g . 4 and
quotations ⟨4⟩ given 40; in other words, 4 is an expression at level 0 and thus it has no top-level
splices. Moreover, values at higher levels (E=+1) are the same set as expressions 4= . Intuitively, E=+1

is a value at level = + 1 if it does not reduce at level = + 1, and thus it can only have at most = nested

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:14 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

module value M3E F structS3E end

structure value S3E F • | mod" = M3E ;S3E | def : = E ;S3E

heap f F • | f, ; ↦→ E

evaluation env Ω3 F • | Ω3 ;"3 ↦→ M3E | Ω3 ;: ↦→ E

ΩB F • | ΩB ;"B ↦→ MB | ΩB ;< ↦→ E

Fig. 14. Dynamic module and structure values in the core calculus<02>2>A4 .

4= (=≥0) (level-annotated expressions)

8= unit= ;= x= := ?.:= <= ?.<=

4=

(_x : g . 4)=

4=1 4=2

(41 42)
=

4=

(ref 4)=

4=1 4=2

(41 := 42)
=

4=

(!4)=

4=+1

(⟨4⟩)=

4=

($4)=+1

E0 E=+1 F 4= (=≥0) (level-annotated values)

80 unit0 ;0

40

(_x : g . 4)0

40

(⟨4⟩)0

Fig. 15. Level-annotated expressions and values

splices, which is exactly expressions of 4= . As an example, if $4 is an expression at level 1, then it is
a value at level 2, which requires it to be inside more quotations.

Operational semantics. Fig. 16 presents the rules for evaluating dynamic modules and structures,
where we simply reduce each let and submodule de�nition in the order they appear. Note that
the notation ?3 ↦→ M3E ∈ Ω3 used in rule ev-m-pmvar is a chain of lookups, whose de�nition
is given at the bottom of the �gure. We use other similar lookup rules when looking for items
inside modules. Moreover, we use Ω ⊢ ⌈·⌉?3 to pre�x a path ?3 to all variables that are de�ned
in ?3 ; we often omit Ω when it is clear from the context. For example, if "1 de�nes def :1 = 1

and mod"2 = struct def :2 = :1 end, then"1."2 evaluates to struct def :2 = "1 .:1 end. The full
de�nitions of those auxiliary judgments are put in the appendix.

We present a number of the more interesting dynamic semantics rules for expressions in Fig. 17.
The judgment f1 Ω 41

=
−→ 42 f2 reads: under heap f1 and evaluation environment Ω, evaluating

41 at level = results to 42 and updates the heap to f2. The rules are used both during compile-time (in
rule e-codeGen in Fig. 19) for evaluating splices, and during run-time for evaluating the compiled
code. Rule ev-qote and ev-splice update the evaluation level accordingly, so we may evaluate
inside quotations and splices. Rule ev-spliceCode splices a quotation at level 1, at which point the
splice and the quotation are both removed. The rest of the four rules concern de�nitions. Notably,
the �rst two rules are for a dynamic evaluation environment only, while the last two are for a static
evaluation environment.

4.4 Type Soundness

We prove syntactic type soundness [Wright and Felleisen 1994] of<02>�2>A4 . First, we establish
preservation. We use f ok to mean that all values inside the heaps are well-typed (i.e. of type
Int). Moreover, we use f Γ ⊢ Ω3 and Γ ⊢ ΩB (Fig. 18) to mean that all de�nition in Ω3 (or ΩB ,
respectively) are well-typed under f and Γ.

Theorem 4.1 (Preservation). Given f ok, and f Γ ⊢ Ω3 , and Γ ⊢ ΩB ,

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:15

f1 Ω M3 −→ M3
′ f2 (Evaluate module)

ev-m-struct

f Ω3 S3 −→ S3
′ f ′

f Ω3 structS3 end −→ structS3
′ end f ′

ev-m-mvar

" ↦→ M3E ∈ Ω3

f Ω3 " −→ M3E f
ev-m-pmvar

?3 ." ↦→ M3E ∈ Ω3

f Ω3 ?3 ." −→ ⌈M3E⌉
?3 f

f1 Ω S3 −→ S3
′ f2 (Evaluate structure)

ev-st-module1

f Ω3 M3 −→ M3
′ f ′

f Ω3 mod"3 = M3 ;S3 −→ mod"3 = M3
′
;S3 f ′

ev-st-module2

f Ω3 ;"3 ↦→ M3E S3 −→ S3
′ f ′

f Ω3 mod"3 = M3E ;S3 −→ mod"3 = M3E ;S3
′ f ′

ev-st-def1

f Ω3 4 0−→ 4′ f ′

f Ω3 def : = 4;S3 −→ def : = 4′;S3 f ′

ev-st-def2

f Ω3 ;: ↦→ E S3 −→ S3
′ f ′

f Ω3 def : = E ;S3 −→ def : = E ;S3
′ f ′

?3 ↦→ M3E ∈ Ω3 (Dynamic path lookup)

lookup-pd-var

"3 ↦→ M3E ∈ Ω3 1;" ↦→ M3E ;Ω3 2

lookup-pd-path

?3 ↦→ structS3E end ∈ Ω3 "3 = M3E ∈ S3E

?3 ."3 ↦→ ⌈M3E⌉
?3 ∈ Ω3

Fig. 16. Operational semantics of dynamic modules and structures

f1 Ω 4
=

−→ 4′ f2 (Evaluate expression (excerpt))

ev-qote

f1 Ω 41
=+1−→ 42 f2

f1 Ω ⟨41⟩
=

−→ ⟨42⟩ f2

ev-splice

f1 Ω 41
=

−→ 42 f2

f1 Ω $41
=+1−→ $42 f2

ev-spliceCode

f Ω $⟨E1⟩ 1−→ E1 f
ev-kvar

: ↦→ E ∈ Ω3

f Ω3 : 0−→ E f

ev-pkvar

?3 .: ↦→ E ∈ Ω3

f Ω3 ?3 .:
0−→ ⌈E⌉?3 f

ev-macro

< ↦→ E ∈ ΩB

f ΩB < 0−→ E f
ev-pmacro

?B .< ↦→ E ∈ ΩB

f ΩB ?B .<
0−→ ⌈E⌉?B f

Fig. 17. Operational semantics of expressions

f Γ ⊢ Ω3 (run time)

env-r-empty

f Γ ⊢ •

env-r-kvar

f Γ ⊢ Ω f Γ ⊢0 E : g

f Γ ⊢ Ω;: ↦→ E
env-r-module

f Γ ⊢ Ω f Γ ⊢ M3 : Δ3

f Γ ⊢ Ω;"3 ↦→ M3

Γ ⊢ ΩB (compile time)

env-c-empty

Γ ⊢ •

env-c-macro

Γ ⊢ Ω • Γ ⊢−1 E : g

Γ ⊢ Ω;< ↦→ E
env-c-module

Γ ⊢ Ω Γ ⊢ MB : ΔB

Γ ⊢ Ω;"B ↦→ MB

Fig. 18. Well-formedness of evaluation environments. Modules in the environment are checked similarly.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:16 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

(modules) if f Γ ⊢ M3 : Δ3 and f Ω3 M3 −→ M3
′ f ′, then f ′

Γ ⊢ M3
′
: Δ3 .

(structures) if f Γ ⊢ S3 : q3 and f Ω3 S3 −→ S3
′ f ′, then f ′

Γ ⊢ S3
′
: q3 .

(expressions) if f Γ ⊢=
′
4 : g and f Ω3 4

=
−→ 4′ f ′ or f ΩB 4

=
−→ 4′ f ′, then f ′

Γ ⊢=
′
4′ : g .

Note that in preservation for expressions, the level at which the expression is typed (=′) and at
which the expression is evaluated (=) can be di�erent, and the theorem proves that every possible
step preserves typing. As an example, (_x : Int. x) 1 is well-typed at any level, but only evaluates
at level 0, and the evaluation result 1 is again well-typed at any level. In fact, we rely on this during
elaboration (rule codeGen in Fig. 19), where an expression inside a top-level splice may be typed
at a negative level while evaluated at level 0.

We then prove progress, which uses level-annotated expressions and values. The notation Γ̂ is a
judgment ensuring that Γ does not contain local variables (i.e. x).

Theorem 4.2 (Progress). Given Γ̂, f ok, f Γ ⊢ Ω3 , and Γ ⊢ ΩB ,

(modules) if f Γ ⊢ M3 : Δ3 , then either M3 is a value, or there exist M3
′ and f ′ such that

f Ω3 M3 −→ M3
′ f ′.

(structures) if f Γ ⊢ S3 : q3 , then either S3 is a value, or there exist S3
′ and f ′ such that

f Ω3 S3 −→ S3
′ f ′.

(expressions) if f Γ ⊢=
′
4 : g where 4= , then either 4 is a value E= , or there exist 4′ and f ′ such that

(=′ < = ∧ f ΩB 4
=

−→ 4′ f ′) or (=′ ≥ = ∧ f Ω3 4
=

−→ 4′ f ′).

Notably, progress for expressions must hold for both compile-time and run-time: when the typing
level is smaller than the evaluation level, it indicates compile-time evaluation (e.g. top-level splices
are type-checked at a negative level but evaluated at level 0) and thus the evaluation requires ΩB ;
otherwise, it is at run-time and the evaluation requires Ω3 .

5 Elaboration

So far we have introduced the source calculus<02>� (§3) and the core calculus<02>�2>A4 (§4). In
this section, we describe an elaboration from<02>� to<02>�2>A4 , the key contribution of this paper.
We establish desirable properties of elaboration in §6.

Recall the three key design choices described in §2.3:

Design Choice 1 Top-level splices do not evaluate inside functors.
Design Choice 2 Top-level splices inside a functor are evaluated during compilation at the point

where the functor is applied.
Design Choice 3 Module arguments are inserted as additional module de�nitions.

At a high level, the elaboration, presented in Fig. 19, 20, and 21, implements these designs by
doing a few things at the same time:

(a) Compile-time code generation for top-level splices 1) when not inside functors (§5.1); or 2)
when functors are applied (§5.2.2).

(b) Split a module (or a structure) into a dynamic one and a static one (§5.2.1;§5.3);
(c) Insert dynamic module arguments, and locally bind static module arguments (§5.3).

We go through these steps in the rest of this section, but we �rst present elaboration of types.

Elaboration of types. The following shows how types in the source are elaborated to types in the
core, where (q)3 and (Δ)3 get the dynamic part of the type, and (q)B and (Δ)B get the static part:

(•)3 = • (: : g ;q)3 = : : g ; (q)3 (< : g ;q)3 = (q)3 (" : Δ;q)3 = "3 : (Δ)3 ; (q)3
(•)B = • (: : g ;q)B = (q)B (< : g ;q)B = < : g ; (q)B (" : Δ;q)B = "B : (Δ)B ; (q)B

(sigq end)3 = sig (q)3 end (Δ1 → Δ2)3 = sig • end

(sigq end)B = sig (q)B end (Δ1 → Δ2)B = Δ1 → Δ2

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:17

f1 Ω ⊢★ 4 { 4 f2 compiler mode ★F c | s | q (Elaborate expression (excerpt))

e-qote

f1 Ω ⊢q 4 { 4 f2

f1 Ω ⊢c∨s ⟨4⟩ { ⟨4⟩ f2

e-splice

f1 Ω ⊢s 4 { 4 f2

f1 Ω ⊢q $4 { $4 f2

e-codeGen

f1 Ω ⊢s 4 { 4 f2 f2 Ω 4 0−→
∗
⟨E1⟩ f3

f1 Ω ⊢c $4 { E1 f3
c

s

q⟨⟩

$ (e-c
ode

Gen
)

$⟨⟩

Fig. 19. Elaboration of expressions

Speci�cally, : : g appears in the dynamic type but not in the static type; dually,< : g appears in the
static type but not the dynamic type. A module variable" elaborates to"3 and"B respectively
for the dynamic and the static part. Lastly, the functor type generates an empty dynamic module,
while returning the same functor type for the static type.

5.1 Compile-Time Code Generation

As described, top-level splices are evaluated during compilation [Xie et al. 2023].
Fig. 19 presents the elaboration rule of expressions. The judgment f1 Ω ⊢★ 4 { 4 f2 reads:

under the heap f1, the evaluation context Ω, the expression 4 under mode ★ elaborates to 4 , and
updates the heap to f2. In contrast to the corresponding source typing judgement, the judgment
threads through a compile-time heap, since compile-time evaluation can allocate references, keeps
track of the (static) evaluation environment Ω, and is associated with a compiler mode★. Moreover,
elaboration does not need a level number.
The de�nition of compiler modes appears at the top of Fig. 19; modes manages compile-time

code generation for top-level splices, similar to the typing state in Template Haskell [Sheard and
Jones 2002]. The transitions between the three modes are shown on the right of the �gure.

More speci�cally, when elaborating expressions inside structures (rule e-st-def and e-st-macro

in Fig. 20), the compiler is in mode c. If the compiler then encounters a splice, it must be a top-level
splice $4 . In this case, the compiler applies rule e-codeGen to evaluate the top-level splice, which
�rst elaborates 4 to 4 , and then evaluates 4 into a quotation ⟨E1⟩ that cannot be reduced further,
where E is a value at level 1 (thus ⟨E1⟩ is a value at level 0). The compiler then removes the quotation
and inserts E1 as the elaboration result. On the other hand, if the compiler encounters a quotation,
it applies rule e-qote, which transitions into mode q. Once inside mode q, the program can
transition to s (rule e-splice) and also go back to q (rule e-qote), but it cannot go back to c. This
way, only top-level splices trigger compile-time code generation.5

Lastly, we remark that rule e-codeGen applies at any level: there can be top-level splices inside
a let de�nition at level 0 (rule e-st-def) or a macro de�nition at level -1 (rule e-st-macro).

5As a side note, the transition disallows nested quotes and splices [Xie et al. 2023]. Extending the transition with e.g. nested

quotations is easy, but supporting nested splices is subtler. In particular, one may expect an expression $($41) with more

nested splices to be evaluated before another expression $42, which is however di�cult to model during typing. Typed

Template Haskell (TTH) [Xie et al. 2022] solves this by lifting splices according to their levels to the top-level; in the above

case, 41 will be put before 42. Integrating a similar approach is future work. We also mark that both Template Haskell [Sheard

and Jones 2002] and Scala [Stucki et al. 2018] disallow nested splices.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:18 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

f1 Ω Γ ⊢ M { L M3 MB f2 (Elaborate module)

e-m-struct

f1 Ω Γ ⊢ S { S3 SB f2

f1 Ω Γ ⊢ structS end { • structS3 end structSB end f2

e-m-mvar

f Ω Γ ⊢ " { • "3 "B f

e-m-pmvar

f Ω Γ ⊢ ? { • ?3 ?B f

f Ω Γ ⊢ ?." { • ?3 ."3 ?B ."B f
e-m-functor

f Ω Γ ⊢ functor (" : Δ1).N { • struct • end ⟨Γ, functor(" : Δ1) . N⟩ f
e-m-app

f1 Ω Γ ⊢ F { L1 F3 FB f2 f2 Ω Γ ⊢ M { L2 M3 MB f3
f3 Ω ⊢ FB •M3 MB =⇒ L3 N3 NB f4

f1 Ω Γ ⊢ F M { L1;L2;L3 N3 NB f4

f1 Ω Γ ⊢ S { S3 SB f2 (Elaborate structure)

e-st-empty

f Ω Γ ⊢ • { • • f

e-st-def

f1 Ω ⊢c 4 { 4 f2 f2 Ω Γ, : : g ⊢ S { S3 SB f3

f1 Ω Γ ⊢ (def : = 4;S) { def : = 4;S3 SB f3
e-st-macro

f1 Ω ⊢c 4 { E f2 f2 Ω;< ↦→ E Γ,< : g ⊢ S { S3 SB f3

f1 Ω Γ ⊢ (def↓< = 4;S) { S3 def↓< = E ;SB f3
e-st-module

f1 Ω Γ ⊢ M { L M3 MB f2 f2 Ω;"B ↦→ (⌈MB⌉
"3) Γ, " : Δ ⊢ S { S3 SB f3

f1 Ω Γ ⊢ (mod" : Δ = M;S) { L;mod"3 = M3 ;S3 mod"B = ⌈MB⌉
"3 ;SB f3

Fig. 20. Elaboration of modules and structures

f1 Ω ⊢ FB •M3 MB =⇒ L M3 MB f2 (Functor applications (excerpt))

e-app-functor

f1 Ω;C;"B ↦→ ⌈MB⌉
"3 Γ, " : Δ1 ⊢ N { L N3 NB f2

f1 Ω ⊢ [C]⟨Γ, functor(" : Δ). N⟩ •M3 MB =⇒ mod"3 = M3 ;L N3 [C;"B ↦→ MB]NB f2
e-app-mvar1

"B ↦→ FB ∈ Ω

f1 Ω ⊢ FB •M3 MB =⇒ L N3 NB f2

f1 Ω ⊢ [C]"B •M3 MB =⇒ L N3 NB f2

e-app-mvar2

"B ↦→ FB ∈ C

f1 Ω ⊢ [C]FB •M3 MB =⇒ L N3 NB f2

f1 Ω ⊢ [C]"B •M3 MB =⇒ L N3 NB f2

Fig. 21. Elaboration of functor applications

5.2 Elaboration of Modules

Fig. 20 presents the elaboration rules of modules. The judgment f1 Ω Γ ⊢ M { L M3 MB f2
reads: under the heap f1, the evaluation context Ω, and the type context Γ, the moduleM elaborates
to a module list L, a dynamic module M3 , and a static moduleMB , and updates the heap to f2.

5.2.1 Module Spli�ing. We start by explaining the elaboration rules for modules. Rule e-m-struct
simply elaborates the structure body. The module list L in this case, and in all the rules other
than rule e-m-app, is always empty. For a module variable (rule e-m-mvar) or a quali�ed module

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:19

variable (rule e-m-pmvar), we separate a variable" into two corresponding module variables"3

and"B . Recall that paths are a subset of modules, which can be elaborated via module elaboration.
For functors (rule e-m-functor), since they are values, we split a functor into an empty dynamic

module, while the static module captures the current type context Γ and the original functor.
Rule e-m-app applies a functor to a module argument. At this point, since the functor is applied,

we would like the top-level splices inside the functor to be evaluated. The elaboration achieves that
in a few steps. First, it elaborates the functor module F into a module list L1, a dynamic module
F3 , and a static module FB . We can safely ignore F3 , as in the case when a module returns a functor,
its dynamic part is always empty. Similarly, it elaborates the argument moduleM into a module
list L2, a dynamic moduleM3 , and a static module MB . Then, the application judgment given in
Fig. 21 (explained below) applies the functor to the argument, generating another module list L3,
a dynamic module N3 , and a static module NB . Finally, the rule returns the concatenation of all
module lists L1;L2;L3, and the �nal dynamic module N3 and static module NB .

5.2.2 Functor Applications. Fig. 21 presents the application rules used in rule e-m-app. The judgment
f1 Ω ⊢ FB •M3 MB =⇒ L M3 MB f2 reads: under the heap f1 and the evaluation context
Ω, applying the functor FB to an argument with dynamic part M3 and static part MB returns a
module list L, a dynamic moduleM3 , a static moduleMB , and updates the heap to f2. Since FB has
a functor type, it must be either a functor, a module variable, or a quali�ed module variable. Fig. 21
presents the rules for the �rst two cases; the case with quali�ed module variables works similarly.
Rule e-app-functor is the most interesting rule. In this case, we know that we are applying a

functor to an argument, and as such the top-level splices inside the functor should get evaluated.
We therefore split the body of the functor N , under the captured type context Γ extended with a
type for the argument" ; we assume" is fresh thanks to alpha-renaming. There are a few notable
things. We �rst elaborate " into two module variables "B and "3 .

6 We extend the evaluation
environment Ω with the module list C as well as the binding"B ↦→ ⌈MB⌉

"3 , since the static part
of the module argument "B may be required for evaluating top-level splices inside N . Notably,
since the static part of a module can quote names from the dynamic part, we use the notation ⌈·⌉"3

to pre�x"3 to all variables that are de�ned in"3 .
Moreover, we need to insert the module argument into the elaboration result. Note that the

dynamic part M3 and the static part MB are treated di�erently. Speci�cally, here is where the
module list L extends: we put M3 to be before L. As we will see, the insertion order is important
for ensuring that splitting preserves the semantics of the program, which we will discuss in §6.3.
On the other hand, the static module"B ↦→ MB is bound locally.
Rule e-app-mvar1 and e-app-mvar2 deal with the cases where the module being applied is a

module variable. In such cases, the module variable may appear inside the evaluation environment
Ω, or in the locally bound modules C, and the rule recurses. In the former case, the locally bound
module variables C are not useful anymore and can be ignored.

5.3 Elaboration of Structures

Lastly, Fig. 20 also presents the elaboration rules for structures. The judgment f1 Ω Γ ⊢ S {

S3 SB f2 elaborates a structure S into a dynamic structure S3 and a static structure SB . An
empty structure produces an empty dynamic and an empty static structure (rule e-st-empty).
Moreover, splitting a structure puts let de�nitions into the dynamic part (rule e-st-def), and

macro de�nitions into the static part (rule e-st-macro). Rule e-st-module uses the elaboration
rule of modules. Interestingly, the rule also inserts the module list L produced by the submodule

6When the arguments are module variables or quali�ed module variables, we can use those variables directly; here we leave

the rule uniform for simplicity.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:20 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

into the containing structure, returning the result dynamic submodule L;mod"3 = M3 ;S3 . This
is valid syntax, as we are returning a structure. Again, the order in which L is inserted is important
for preserving the semantics.

5.4 Example

To demonstrate how elaboration works, we apply the elaboration rules to the example in §2.3. We
omit the type de�nition, and assume elaboration works on recursive bindings and if-expressions.
Speci�cally, consider elaborating the functor application F M, where

F = functor(" : Δ) . N

Δ = sig (>=4 : Code Int;<D; : Code Int → Code Int → Code Int; Bℎ>F : Int → String) end

N = struct (def 5?>F4A = _= : Int. _x : Int.if = = 0 then $(".>=4) else $(".<D; ⟨x⟩ ⟨5?>F4A (= − 1) x⟩);

def Bℎ>F_?>F4A5 = _x : Int. ".Bℎ>F (5?>F4A 5 x);

def↓ Bℎ>F$=4 = _x : Unit. ⟨".Bℎ>F $(".>=4)⟩) end

M = struct (def↓ >=4 = ⟨1⟩; def↓<D; = _x : Code Int. _y : Code Int. ⟨$(x) ∗ $(y)⟩;

def Bℎ>F = BCA8=6_> 5 _8=C) end

Elaborating functor applications. We�rst elaborate the functor, which produces an empty dynamic
module, and a static module that captures the typing context with the functor:

A
f Ω Γ ⊢ F { • struct • end ⟨Γ, functor(" : Δ). N⟩ f

e-m-functor

We then elaborate the module argument. Since the argument is a structure with a list of items, we
simply separate the let de�nition from the macro de�nitions; we omit the detailed derivations.

M3 = (struct def Bℎ>F = BCA8=6_> 5 _8=C end)

MB = (struct def↓ >=4 = ⟨1⟩; def↓<D; = _x : Code Int. _y : Code Int. ⟨$(x) ∗ $(y)⟩ end)

B
· · · · · ·

f Ω Γ ⊢ M { • M3 MB f
e-m-struct

Combining these two steps in the rule for functor applications (rule e-m-app), we now need to
derive f Ω ⊢ ⟨Γ, functor(" : Δ). N⟩ •M3 MB using rule e-app-functor. At this point, rule e-
app-functor puts"B ↦→ MB into the evaluation environment, making macros from MB available
when elaborating the functor bodyN . Moreover, note thatNB keeps track of the binding"B ↦→ MB .

N3 = struct (def 5?>F4A = _= : Int. _x : Int.if = = 0 then 1 else x ∗ (5?>F4A (= − 1) x);

def Bℎ>F_?>F4A5 = _x : Int. "3 .Bℎ>F (5?>F4A 5 x)) end

NB = struct (def↓ Bℎ>F$=4 = _x : Unit. ⟨"3 .Bℎ>F $("B .>=4)⟩) end

C
f Ω;"B ↦→ MB Γ, " : Δ ⊢ N { • N3 NB f

e-m-struct

f Ω ⊢ ⟨Γ, functor(" : Δ) . N⟩ •M3 MB =⇒ mod"3 = M3 N3 ["B ↦→ MB]NB f
e-app-functor

Putting the three derivations together, we have:

A B C

f Ω Γ ⊢ F M { mod"3 = M3 N3 ["B ↦→ MB]NB f
e-m-app

Compile-time code generation. In the derivation for C , since "B is available, top-level splices are
evaluated when elaborating N into N3 . As an example, we look at the else part of 5?>F4A , which
applies the code generation rule e-codeGen:

f Ω;"B ↦→ MB ⊢s ".<D; ⟨x⟩ ⟨5?>F4A (= − 1) x⟩ { "B .<D; ⟨x⟩ ⟨5?>F4A (= − 1) x⟩ f

f Ω;"B ↦→ MB "B .<D; ⟨x⟩ ⟨5?>F4A (= − 1) x⟩ 0−→∗ ⟨x ∗ (5?>F4A (= − 1) x)⟩ f

f Ω;"B ↦→ MB ⊢c $(".<D; ⟨x⟩ ⟨5?>F4A (= − 1) x⟩) { x ∗ (5?>F4A (= − 1) x) f
e-codeGen

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:21

Here, the elaboration part does nothing. The evaluation shows how quotations and splices work
together at compile-time. More concretely, we �rst have

f Ω;"B ↦→ MB "B .<D; ⟨x⟩ ⟨5?>F4A (= − 1) x⟩ 0−→∗ ⟨$(⟨x⟩) ∗ $(⟨5?>F4A (= − 1) x⟩)⟩ f

At this point, we evaluate inside quotations, and rule ev-spliceCode cancels out splice-quotation
pairs at level 1:

f Ω;"B ↦→ MB $(⟨x⟩) 1−→∗ x f
ev-spliceCode

· · · · · ·

f Ω;"B ↦→ MB $(⟨x⟩) ∗ $(⟨5?>F4A (= − 1) x⟩) 1−→∗ x ∗ (5?>F4A (= − 1) x) f
ev-app1,ev-app2

f Ω;"B ↦→ MB ⟨$(⟨x⟩) ∗ $(⟨5?>F4A (= − 1) x⟩)⟩ 0−→∗ ⟨x ∗ (5?>F4A (= − 1) x)⟩ f
ev-qote

The evaluation result is then given to rule e-codeGen, which removes the quotation.

6 Metatheory

In this section, we discuss desirable properties for the elaboration process, including elaboration
soundness (§6.1), phase distinction (§6.2), and that elaboration preserves semantics (§6.3).

6.1 Elaboration Soundness and Phase Distinction

The following theorem establishes elaboration soundness for modules, structures, and expressions.

Theorem 6.1 (Elaboration Soundness). Given f1 ok and • ⊢ ΩB ,

(modules) if • ⊢ M : Δ, and f1 ΩB • ⊢ M { L M3 MB f2,

then (1) • • ⊢ L : q3 , (2) • q3 ⊢ M3 : Δ3 , (3) Δ3 <: (Δ)3 , and (4) q3 ,Δ3 ⊢ MB : (Δ)B .

(structures) if • ⊢ S : q , and f1 ΩB • ⊢ S { S3 SB f2,

then (1) • • ⊢ S3 : q3 , (2) q3 <: (q)3 , and (3) q3 ⊢ SB : (q)B .

(expressions) if • ⊢= 4 : g , and f ΩB ⊢★ 4 { 4 f ′, then • • ⊢= 4 : g .

There are a few notable things. First, notice that the elaboration results are type-checked under
an empty heap. This property is important as, in practice, we may compile a program in one
environment, and then run the compiled program in a di�erent environment. It is consequently
important that the compiled program does not refer to any values from the compile-time heap.
Intuitively, this holds as any locations generated at compile-time will be level −1, which cannot be
referred to in the compiled program. This suggests that compile-time heaps (both f1 and f2) can be
safely discarded after compilation.

Second, since elaboration of structures insert the module list L into the elaboration result, in the
elaboration soundness of modules and structures, the type Δ3 or q3 can potentially contain more
items than (Δ)3 or (q)3 ; we use <: to denote such a relation.7

Moreover, since q3 is a list of item types, we put it inside a context to mean that we add all its
items to the context. Similarly, we put Δ3 in a context to mean that since we know it has shape
sigq3 end, we put q3 in the context. For example, in elaboration soundness for modules (2), we add
q3 to the context to type-checkM3 . which has type Δ3 . Similarly, we put both q3 and Δ3 in the
context to type-check MB , which has type (Δ)B . Note that whileM3 depends on L,MB depends
on both L andM3 .

6.2 Phase Distinction

Xie et al. [2023] proved a phase distinction theorem for the core calculus for MacoCaml, which says
that compile-time only computations are not needed for run-time evaluation. Speci�cally, with the
erasure notation J·K that erases the static part (i.e. macros) of a module, we have:

7In a system with module subtyping, we could type-check e.g. M3 with (Δ)3 ; see more discussion in §7.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:22 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

Theorem 6.2 (Phase Distinction in Xie et al. [2023]). Given f ok, f Γ ⊢ Ω and f Γ ⊢ M : Δ, if

f Ω M −→ M′ f ′, then f JΩK JMK −→ JM′K f ′,

Therefore, after elaboration, the macros can be erased before evaluation.
With our formalism, this property is evident. In<02>�2>A4 , since each module is explicitly divided

into a dynamic module and a static module, no additional erasure is needed. Moreover, the elabora-
tion soundness of modules (Theorem 6.1) makes clear that the dynamic part does not depend on
the static part at all. In other words, our formalism enjoys phase distinction by construction.

6.3 Elaboration Preserves Semantics

The elaboration process produces an additional module listL that is inserted into a structure (rule e-
st-module). The module list consists of lifted module arguments (rule e-app-functor). One may
wonder whether lifting and inserting those dynamic modules could change the semantics of a
program, especially since our calculus includes side-e�ects.
We prove that elaboration preserves the semantics — or, more precisely, the observable side-

e�ects — of expressions. To this end, we �rst consider a direct operational semantics for the source
calculus. Speci�cally, if the source program has no macros, splices, or quotations, we can de�ne
a direct operational semantics denoted as M1 −→ M2, which is similar to the semantics of the
dynamic modules in the core calculus, but extended with evaluation rules for functor applications
M1 M2, which �rst evaluateM1, and then M2, and �nally reduce the application:8

f Ω3 (functor (" : Δ).N) ME −→ N[" ↦→ ME] f

If we are given a source program that has no macros, splices, or quotations, we can now evaluate it
in two di�erent ways: (1) we can evaluate it using the direct operational semantics, or (2) we can
�rst elaborate it into the core calculus, which involves module splitting and insertion, and then
we evaluate the elaborated result according to the semantics of the core calculus. Ideally, if we lift
and insert module bindings in the order they would have been evaluated by the above semantics,
these two evaluation strategies should produce the same side-e�ects. To make this more precise,
we assume that rule ev-ref creates locations (;) in a deterministic order. This allows for a direct
comparison of the order in which ref 4 expressions are evaluated. Then we prove:

Theorem 6.3 (Elaboration Preserves Semantics). Given f • M −→
∗
ME f ′,

if • • Γ ⊢ M { L M3 MB f1, and f • L −→
∗
LE f2, and f2 LE M3 −→

∗
M3E f ′′,

then f ′
= f ′′.

Namely, whether we �rst evaluate the module according to the direct operational semantics, or
�rst elaborate it to the core and evaluate �rst the generated module list and then the dynamic
module (where we write LE in an evaluation context to mean that the bindings are put in the
environment), we get the same resulting heaps f ′ and f ′′. This lemma applies to source programs
without macros or staging, as the semantics of programs with macros or staging are de�ned in
terms of elaboration. In the above lemma, we could also relate ME toMB , LE , and M3E , but here
we are mainly concerned about the produced side-e�ects.

7 Extensions

This work focuses on the combination of functors and compile-time code generation. A full module
system includes additional features, and in this section we discuss the most relevant ones.

8This rule provides a substitution based semantics for functor applications, assuming path resolution during substitution. An

alternative way is to add" ↦→ ME to the evaluation environment Ω3 to evaluate N, which would require the operational

semantics to be changed to also return an updated evaluation environment.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:23

Module imports. MacoCaml supports module imports as well as shifted module imports [Flatt
2002], where modules can be imported at compile-time. This allows writing interesting programs
which manipulate and share references across splices. Consider a module Term

(* term.ml *)

struct let id = ref 0 end

Importing the module at compile-time shifts all its de�nitions by -1, which allows us to use id

when de�ning macros:

(* program.ml *)

module ~N = Term (* import Term at compile-time as N *)

macro incr () = N.id := !N.id + 1 (* N.id at level -1 *)

Whenever incr is called inside a top-level splice, the reference id will get incremented.
Our formalism has been set up to be compatible with module imports, with the heaps threaded

through elaboration. Supporting unshifted module imports is relatively straightforward, where
we import the compiled form of a module L M3 MB . In our current setting, the compiled
module includes the inserted modules to preserve type soundness, while those modules should
not be directly accessible by the user. Importing shifted modules is subtler. If we import a module
at compile-time, its corresponding L andM3 become static components (at level -1), whileMB

will be at level -2. Moreover, the module importing the shifted module may itself be imported at
compile-time by another module, putting MB at level -3. In such a case, splitting needs to return =
modules where = is the number of levels we have. We leave such a formalism to future work.

Module subtyping. So far we have focused on the situation where every module exports all the
de�nitions in its body, including additionally inserted modules. In systems supporting module

subtyping [Mitchell and Harper 1988], we can choose to selectively export de�nitions, and also
not to expose the inserted modules, by ascribing a signature to a module that lists only a subset
of the module’s components. The problem with module subtyping in the context of MacoCaml
and<02>� is that generated code may refer to names that are not in scope, having been hidden by
ascription. As a simple example, in the following fragment, the call to M.m on the last line generates
a reference to secret, which is not accessible outside the de�nition of M:

module M : sig macro m : unit → int expr end

= struct let secret = 1 ;; macro m () = <<secret>> end

$(M.m ()) (* M.secret not in scope *)

To deal with this extrusion, the MacoCaml compiler (but not the published formalism) implements
path closures that transform each macro that quotes module-local de�nitions so that the quoted
names are exported in a module that is inserted alongside the macro. Following the path closure
transformation, M is transformed to export an additional module Closure_1, and the call to M.m

generates the name M.Closure_1.secret. We plan to formalize path closures in the future.
We also anticipate that module subtyping will be helpful for simplifying some aspects of our

metatheory; in particular, it will allow us to state that the dynamic part of a module has type (Δ)3
rather than Δ3 <: (Δ)3 .

8 Integration into OCaml

We consider some practical issues related to the compilation of a programs in a<02>� -style language
— that is, a language that supports both module functors and macros — and to the incorporation of
our design into the existing OCaml toolchain.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:24 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

8.1 Compilation of Functors: Parameterization vs Instantiation

The OCaml compiler, like some other ML-family implementations such as SML/NJ, compiles the
de�nitions of functors independently of their applications [Appel and MacQueen 1994; Leroy 1994].
In other words, functors are compiled like functions: a functor like R in Fig. 1 (§2.2) is compiled
and represented in the same way as a function from a record with three �elds (one, mul, show) to a
record with two �elds (rpower, show_power5). With this parametric approach, values are represented
uniformly at run time, and the compilation of the code that acts upon those values cannot depend
on the types of the values: the rpower function in the body of R is compiled to a single piece of code
that is re-used unchanged in every application of R.

The parametric approach enjoys several advantages over an instantiation-based model, where the
body of the functor is recompiled every time the functor is applied. These advantages include small
code and strong support for separate compilation, leading to short compilation times. However,
the parametric approach also su�ers from some drawbacks: in particular, it compiles functions
produced by functor applications to less e�cient code than equivalent functions that were written
without functor abstraction. For example, in the module RInt, the indirect call M.mul to a function
passed as an argument is a good deal less e�cient than a direct use of the built-in operator +, and the
code for rpower is not specialized to the int type supplied in the functor application9. For reasons
such as these, some aggressively-optimising compilers follow an instantiation-based approach:
examples include Mlton (which dubs it defunctorization [Weeks 2006]) and MLKit (which calls it
static interpretation [Elsman 1999]).

8.2 Compilation of Functors Involving Macros

With the addition of macros to the OCaml language, the parametric compilation scheme is no
longer su�cient. For example, in the functor F in Fig. 2, the code generated for fpower depends on
the parameters M.one and M.mul: clearly, it is not possible to compile fpower to a single piece of
code. Switching to an instantiation-based compilation model for functors resolves the issue, and it
is not di�cult to show that such a model is also correct for existing OCaml code, since it amounts
to inlining each functor at every application type.

The instantiation scheme corresponds to the approach to the compilation of functors set out in
§5, which eliminates functor applications by elaboration (Fig. 21). However, switching wholesale to
instantiation-based compilation for functors would not be acceptable to the OCaml community,
since it would lead to substantial increases in code size and compilation times.
Fortunately, the addition of macros does not require changing the way that most functors are

compiled. For functors that make no use of macros, clearly no change is needed: the existing scheme
is su�cient. Functors that additionally export macros do not necessarily need to use instantiation,
either: it is only those functors that import macros and use them in functions de�ned within the
bodies of the functors that require a switch to the instantiation-based model.

In other words, we treat the elaboration in §5 as a speci�cation of compilation. For functors that
import macros the compiler can follow the elaboration scheme directly; for functors that do not
import macros, the compiler can continue to use the parametric approach, which is semantically
equivalent in such cases.

Where code size remains a concern, we might even further disaggregate functor bodies according
to the dependencies of their components, using parameterization-based compilation for those parts
of the body that do not (directly or indirectly) depend on macros supplied by the argument, and
the instantiation-based scheme for those parts that do.

9For int the lack of specialization does not matter much in OCaml; for other types the lack of specialization might lead to

missed opportunities for unboxing optimisations, for example.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:25

9 Related Work

The work most closely related to ours, Xie et al. [2023], forms the foundation for our development.

9.1 Combining Modules with Staged Definitions

Suwa and Igarashi [2024] present a staging calculus with a ML-style module system, but without
mutable references. With their design, a de�nition declared at level = is elaborated into an ordinary
de�nition (i.e. at level 0) but with its bound expression wrapped inside = quotations. While their
elaboration produces well-typed programs, it makes all de�nitions to be used in a call-by-name
manner. As a result, certain desirable properties such as Theorem 6.3 do not hold, and it is unclear
how their design applies to OCaml.

9.2 Staging Modules

Another line of work connecting functors with staging [Inoue et al. 2016; Sato and Kameyama 2021;
Sato et al. 2020; Watanabe and Kameyama 2018] addresses the challenge of supporting quotations
that generate modules and functors, which is complementary to our design for modules and functors
that contain macros.

9.3 Typed�otation-Based Macros

The typed quotations that macros in <02>� use to construct code were initially designed for
run-time code generation in MetaML [Taha 1999], and derive from temporal logic [Davies 1996];
our Codeg type constructor corresponds to the ⃝ operator in Davies’ _⃝ , which models open
future-stage terms. Our code quotations inherit various pleasant guarantees from MetaML: for
example, binding in quotations is lexically-scoped and avoids inadvertent capture. A separate
body of work on staged languages (e.g. by Jang et al. [2022] and Murase et al. [2023]) derive
from modal logic [Davies and Pfenning 1996], where the □ operator models closed future-stage
terms, via contextual modal logic [Nanevski et al. 2008], where the contextual operator [Ψ] models
future-stage terms that draw variables from a context Ψ.
MetaML’s quotations have been adapted for compile-time code generation a number of times:

MacroML [Ganz et al. 2001] adapts quotations to de�ne staged macros that are translated to
MetaML programs by elaboration; Staged Notational De�nitions [Taha and Johann 2003] extend
MacroML to better support alpha-conversion; Stucki et al. [2018] use typed code quotations for
both compile-time and run-time code generation in a single system.

None of these works examines the interplay between functors and macros. In contrast, Xie et al.
[2022] formally study the interaction between compile-time staging and type class constraints
(which correspond to a kind of implicit functor), and propose a new construct, staged type class
constraints, that resolves an elaboration failure in the implementation of Typed Template Haskell.
The particular problem that staged type class constraints address does not arise in<02>� , which
does not support implicit functors, and Xie et al. are principally interested in typing and elaboration,
rather than the evaluation of staged programs that is a key focus of the current paper.

9.4 Multi-Stage Programming with Functors

Among users of MetaML-family languages there is an established pattern of combining functors
with quotation-based run-time code generation to build parameterized libraries in which parame-
terization does not introduce any overhead into the generated code. Type classes in Haskell play a
similar role to ML functors — in fact, there is a well-known correspondence between the two [Wehr
and Chakravarty 2008] — so we also note applications of type classes with quotation here.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:26 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

Carette and Kiselyov [2005] showed that the combination of functor abstraction and quotation-
based staging allow the de�nition of families of algorithms without any abstraction overhead,
taking Gaussian elimination as a representative example. Carette et al. [2011] makes similar use
of functors to support con�guration of the code generator in a generative geometric kernel. The
seminal work by Carette et al. [2009], which introduced the tagless �nal approach to de�ning
domain-speci�c languages (DSLs), uses functors to abstract over the interpretations of a DSL;
several of the interpretations make use of quotation-based staging to compile terms in the DSL to
e�cient code. The particular combination of functor abstraction and code generation used in the
tagless �nal approach has been applied to generate code for a wide variety of domains; for example,
Suzuki et al. [2016] use it to e�ciently embed a relational query language into OCaml and Tokuda
and Kameyama [2023] use it to generate e�cient algorithms for post-quantum cryptography.

Yallop [2017] usesmodular implicits [White et al. 2014] (a kind of �rst-class functor that supports
implicit instantiation) to structure the code of a generative generic programming library. Yallop
et al. [2018b] uses type classes with Typed Template Haskell’s code quotations to provide a modular
library for optimization of terms in various algebras.

In contrast to these works, most existing OCaml libraries10 for compile-time code generation do
not make use of functors, because they are based on preprocessors such as Camlp5 [de Rauglaudre
2007] (which transforms concrete syntax) and ppx [White 2013] (which transforms abstract syntax),
which are not aware of binding scopes, types, modules, etc., and so do not take account of the context
in which invocations of code-generating functions appear. Two notable exceptions are the library
operating systemMirage [Radanne et al. 2019], which uses functors and code generation to generate
specialized operating system kernels by assembling typed components, and the ctypes foreign
function library [Yallop et al. 2018a], which uses functors to abstract over the code-generating
interpretations of a DSL that describes the interface between OCaml and C code.
We believe that the<02>� design o�ers signi�cant bene�ts for these existing applications. For

compile-time code generation libraries,<02>� o�ers several advantages over tools such as ppx: it
is binding-aware, type-safe (in the sense that well-typed macros always produce well-typed code),
and fully integrated into the module system of the host language, allowing code generators to be
structured as typed libraries rather than external tools. For existing typed MetaML-family libraries,
<02>� ’s integration of macros with functors supports precise control over evaluation order (since
functor applications trigger evaluation of splices in functor bodies), arbitrary dependencies between
dynamic and static components of modules, and simpli�ed run-time behaviour compared to systems
such as MetaOCaml, which require either a runtime with an embedded compiler or code that is
executed by being �rst printed to a �le. In <02>� , macros enjoy the same integration into the
module system as functions; they di�er only in the phase at which they are available for execution.

9.5 Module Elaboration and Phase Spli�ing

Our formalisation follows a tradition of de�ning the semantics of module systems by elaboration
into a core typed calculus; key previous examples include work by Harper and Stone [2000], which
elaborates both the core and the module system of Standard ML into a module-based calculus, and
by Rossberg et al. [2014], which shows that ML-family module systems can be elaborated into plain
System Fl , an insight that Suwa and Igarashi [2024] use in elaborating their staged calculus.

9.5.1 Phase Spli�ing. Harper et al. [1989] introduced the notion of phase splitting for decomposing
modules and functors into separate compile-time and run-time components, e�ectively showing
that the ML module system did not need the full power of the dependent type systems that were

10Compile-time code generation is widely used in OCaml: at the time of writing there are over 200 libraries available via the

OPAM package manager that depend on the ppx utility library ppxlib.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:27

traditionally used to model it. Our work here is directly inspired by theirs, but the addition of
macros extends the notion of compile-time, which originally referred to static analysis such as
type-checking, to include full computation.
The key bene�t of phase splitting, i.e. the disentangling of dependencies between static and

dynamic components of modules, has been used to improve the precision of various analyses in
tricky typing problems. Shao [1999] uses phase splitting to improve type sharing information
across functor applications in an extension of Standard ML’s module system to support higher-
order functors. Dreyer et al. [2001] discuss module splitting in the context of recursive module
declarations, noting that the lack of splitting in the Harper-Stone elaboration makes analysis
of dependencies and signature equivalence unnecessarily di�cult. As they note, the problem is
resolved by Crary et al. [1999], who use phase splitting to show that dependencies of terms on
types in recursive modules can be removed by elaboration; only dependencies of types on types
are “essentially” recursive. The elaboration of ML into System Fl in the work by Rossberg et al.
[2014] can also be viewed as a kind of splitting, since the target calculus clearly separates types
from terms. The elaboration was subsequently used as the basis of 1ML, a redesign of ML in which
the core and module languages are united and modules are �rst class [Rossberg 2018].
Besides these uses in formalisation and analysis, functor splitting is sometimes also used as an

implementation technique, e.g. in the Flint/ML compiler [Shao 1997].
Finally, Thiemann [1999] notes an interesting equivalence between phase splitting for modules

and specialization in partial evaluation. He equates functors in the work by Harper et al. [1989]
with specialization-time functions whose applications should be reduced before run-time, and
draws a connection between the application of phase splitting to recursive modules by Crary et al.
[1999] and the computation of a specialization-time �xpoint.

10 Conclusion

We have presented the design and implementation of <02>� , a calculus that supports a novel
combination of typed macros, quotation-based staging, and module functors, and given its type-
preserving elaboration into<02>�2>A4 . Our elaboration is structured around a splitting transformation
inspired by the phase splitting transformation of Harper et al. [1989], but extended to support
compile-time computation.
Future work. Our focus in this paper is on the combination of module functors as found in

ML-family languages with compile-time quotation-based staging found in MacoCaml. As §3 says,
type declarations are largely orthogonal to our focus on elaboration and evaluation, and so omitted.
Extending the language to support type declarations will require consideration of the design
question as to whether types, like values, should inhabit stage-indexed universes as proposed by
Kovács [2022], or a single universe that is invariant across stages, as in MetaOCaml [Taha 1999].
Our calculus also lacks support for the module subtyping [Mitchell and Harper 1988] that

is characteristic of ML-style module systems, and that introduces additional challenges when
combined with quotation-based staging. In particular, since module subtyping supports hiding
exported names during signature ascription, it is possible formacros in amodule to expose let-bound
names into a scope where (having been hidden by signature ascription) they are not visible (§7),
compromising the subject reduction property. We anticipate extending our calculus to support the
path closures described by Xie et al. [2023] to address this unsound interaction.

Acknowledgments

We thank the anonymous reviewers for helpful comments, and Dmitrij Szamozvancev for feedback
on a draft. This work is funded by the Natural Sciences and Engineering Research Council of
Canada, by Jane Street Capital, and by Ahrefs.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:28 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

A Complete Rules

A.1 Source Typing

Γ ⊢ M : Δ (Typing module)
m-struct

Γ ⊢ S : q

Γ ⊢ structS end : sigq end

m-mvar

" : Δ ∈ Γ

Γ ⊢ " : Δ

m-pmvar

Γ ⊢ ? : sigq end " : Δ ∈ q

Γ ⊢ ?." : Δ
m-functor

Γ, " : Δ1 ⊢ N : Δ2

Γ ⊢ functor (" : Δ1).N : Δ1 → Δ2

m-app

Γ ⊢ F : Δ1 → Δ2 Γ ⊢ M : Δ1

Γ ⊢ F M : Δ2

Γ ⊢ S : q (Typing structure)

st-empty

Γ ⊢ • : •

st-def

Γ ⊢0 4 : g Γ, : : g ⊢ S : q

Γ ⊢ (def : = 4;S) : (: : g ;q)

st-macro

Γ ⊢−1 4 : g Γ,< : g ⊢ S : q

Γ ⊢ (def↓< = 4;S) : (< : g ;q)
st-module

Γ ⊢ M : Δ Γ, " : Δ ⊢ S : q

Γ ⊢ (mod" : Δ = M;S) : (" : Δ;q)

Γ ⊢= 4 : g (Typing expression)

lit

Γ ⊢= 8 : Int

unit

Γ ⊢= unit : Unit

var

x : (g, =) ∈ Γ

Γ ⊢= x : g

kvar

: : g ∈ Γ

Γ ⊢0 : : g

macro

< : g ∈ Γ

Γ ⊢−1 < : g
pkvar

Γ ⊢ ? : sigq end : : g ∈ q

Γ ⊢0 ?.: : g

pmacro

Γ ⊢ ? : sigq end < : g ∈ q

Γ ⊢−1 ?.< : g
abs

Γ, x : (g1, =) ⊢
= 4 : g2

Γ ⊢= _x : g1. 4 : g1 → g2

app

Γ ⊢= 41 : g1 → g2 Γ ⊢= 42 : g1

Γ ⊢= 41 42 : g2

ref

Γ ⊢= 4 : Int

Γ ⊢= ref 4 : Ref Int
get

Γ ⊢= 4 : Ref Int

Γ ⊢=!4 : Int

set

Γ ⊢= 41 : Ref Int Γ ⊢= 42 : Int

Γ ⊢= 41 := 42 : Unit

qote

Γ ⊢=+1 4 : g

Γ ⊢= ⟨4⟩ : Codeg

splice

Γ ⊢=−1 4 : Codeg

Γ ⊢= $4 : g

A.2 Core Typing

f Γ ⊢ M3 : Δ3 (Typing dynamic module)

cd-m-var

"3 : Δ3 ∈ Γ

f Γ ⊢ "3 : Δ3

cd-m-path

f Γ ⊢ ?3 : sigq3 end " : Δ3 ∈ q3

f Γ ⊢ ?3 ."3 : Δ3
cd-m-struct

f Γ ⊢ S3 : q3

f Γ ⊢ structS3 end : sigq3 end

f Γ ⊢ S3 : q3 (Typing dynamic structure)

cd-st-empty

f Γ ⊢ • : •

cd-st-def

f Γ ⊢0 4 : g f Γ, : : g ⊢ S3 : q3

f Γ ⊢ (def : = 4;S3) : (: : g ;q3)

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:29

cd-st-module

f Γ ⊢ M3 : Δ3 f Γ, "3 : Δ3 ⊢ S3 : q3

f Γ ⊢ (mod"3 = M3 ;S3) : ("3 : Δ3 ;q3)

Γ ⊢ MB : ΔB (Typing static module)

cs-m-var

"B : ΔB ∈ Γ

Γ ⊢ "B : ΔB

cs-m-path

Γ ⊢ ?B : sigqB end "B : ΔB ∈ qB

Γ ⊢ ?B ."B : ΔB

cs-m-struct

Γ ⊢ SB : qB

Γ ⊢ structSB end : sigqB end
cs-m-functor

Γ1 ⊢ functor (" : Δ1).N : Δ1 → Δ2

Γ ⊢ ⟨Γ1, functor(" : Δ1). N⟩ : Δ1 → Δ2

cs-m-local

Γ ⊢ MB : ΔB Γ, "B : ΔB ⊢ MB
′
: ΔB

′

Γ ⊢ let"B = MB inMB
′
: ΔB

′

Γ ⊢ SB : qB (Typing static structure)

cs-st-empty

Γ ⊢ • : •

cs-st-macro

• Γ ⊢−1 E : g Γ,< : g ⊢ SB : qB

Γ ⊢ (def↓< = E ;SB) : (< : g ;qB)

cs-st-module

Γ ⊢ MB : ΔB Γ, "B : ΔB ⊢ SB : qB

Γ ⊢ (mod"B = MB ;SB) : (" : ΔB ;qB)

f Γ ⊢= 4 : g (Typing expression)

c-lit

f Γ ⊢= 8 : Int

c-unit

f Γ ⊢= unit : Unit

c-var

x : (g, =) ∈ Γ

f Γ ⊢= x : g

c-abs

f Γ, x : (g1, =) ⊢
= 4 : g2

f Γ ⊢= _x : g1. 4 : g1 → g2
c-app

f Γ ⊢= 41 : g1 → g2 f Γ ⊢= 42 : g1

f Γ ⊢= 41 42 : g2

c-kvar

: : g ∈ Γ

f Γ ⊢0 : : g

c-macro

< : g ∈ Γ

f Γ ⊢−1 < : g
c-pkvar

Γ ⊢ ?3 : sigq3 end : : g ∈ q3

f Γ ⊢0 ?3 .: : g

c-pmacro

Γ ⊢ ?B : sigqB end < : g ∈ qB

f Γ ⊢−1 ?B .< : g
c-ref

f Γ ⊢= 4 : Int

f Γ ⊢= ref 4 : Ref Int

c-assign

f Γ ⊢= 41 : Ref Int f Γ ⊢= 42 : Int

f Γ ⊢= 41 := 42 : Unit

c-deref

f Γ ⊢= 4 : Ref Int

f Γ ⊢=!4 : Int
c-qote

f Γ ⊢=+1 4 : g

f Γ ⊢= ⟨4⟩ : Codeg

c-splice

f Γ ⊢=−1 4 : Codeg

f Γ ⊢= $4 : g

c-loc

; ∈ f

f Γ ⊢= ; : Ref Int

A.3 Core Dynamic Semantics

f1 Ω M3 −→ M3
′ f2 (Evaluate module)

ev-m-struct

f Ω3 S3 −→ S3
′ f ′

f Ω3 structS3 end −→ structS3
′ end f ′

ev-m-mvar

" ↦→ M3E ∈ Ω3

f Ω3 " −→ M3E f
ev-m-pmvar

?3 ." ↦→ M3E ∈ Ω3

f Ω3 ?3 ." −→ ⌈M3E⌉
?3 f

f1 Ω S3 −→ S3
′ f2 (Evaluate structure)

ev-st-module1

f Ω3 M3 −→ M3
′ f ′

f Ω3 mod"3 = M3 ;S3 −→ mod"3 = M3
′
;S3 f ′

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:30 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

ev-st-module2

f Ω3 ;"3 ↦→ M3E S3 −→ S3
′ f ′

f Ω3 mod"3 = M3E ;S3 −→ mod"3 = M3E ;S3
′ f ′

ev-st-def1

f Ω3 4 0−→ 4′ f ′

f Ω3 def : = 4;S3 −→ def : = 4′;S3 f ′

ev-st-def2

f Ω3 ;: ↦→ E S3 −→ S3
′ f ′

f Ω3 def : = E ;S3 −→ def : = E ;S3
′ f ′

f1 Ω 4
=

−→ 4′ f2 (Evaluate expression)

ev-app1

f1 Ω 41
=

−→ 4′1 f2

f1 Ω 41 42
=

−→ 4′1 42 f2

ev-app2

f1 Ω 4
=

−→ 4′ f2

f1 Ω E= 4
=

−→ E= 4′ f2

ev-abs

f Ω 4 =+1−→ 4′ f

f Ω _x : g . 4 =+1−→ _x : g . 4′ f

ev-beta

f Ω (_x : g . 4) E 0−→ 4 [x ↦→ E] f

ev-ref1

f1 Ω 4
=

−→ 4′ f2

f1 Ω ref 4
=

−→ ref 4′ f2
ev-ref

; ∉ f

f Ω ref E 0−→ ; f, ; ↦→ E

ev-assign1

f1 Ω 41
=

−→ 4′1 f2

f1 Ω 41 := 42
=

−→ 4′1 := 42 f2
ev-assign2

f1 Ω 4
=

−→ 4′ f2

f1 Ω E= := 4
=

−→ E= := 4′ f2

ev-assign

; ∈ f

f Ω ; := E 0−→ unit f [; ↦→ E]

ev-deref1

f1 Ω 4
=

−→ 4′ f2

f1 Ω !4
=

−→!4′ f2
ev-deref

; ↦→ E ∈ f

f Ω !; 0−→ E f

ev-qote

f1 Ω 41
=+1−→ 42 f2

f1 Ω ⟨41⟩
=

−→ ⟨42⟩ f2

ev-splice

f1 Ω 41
=

−→ 42 f2

f1 Ω $41
=+1−→ $42 f2

ev-spliceCode

f Ω $⟨E1⟩ 1−→ E1 f

ev-kvar

: ↦→ E ∈ Ω3

f Ω3 : 0−→ E f

ev-pkvar

?3 .: ↦→ E ∈ Ω3

f Ω3 ?3 .:
0−→ ⌈E⌉?3 f

ev-macro

< ↦→ E ∈ ΩB

f ΩB < 0−→ E f

ev-pmacro

?B .< ↦→ E ∈ ΩB

f ΩB ?B .<
0−→ ⌈E⌉?B f

?3 ↦→ M3E ∈ Ω3 (Dynamic path lookup)

lookup-pd-var

"3 ↦→ M3E ∈ Ω3 1;" ↦→ M3E ;Ω3 2

lookup-pd-path

?3 ↦→ structS3E end ∈ Ω3 "3 = M3E ∈ S3E

?3 ."3 ↦→ ⌈M3E⌉
?3 ∈ Ω3

?3 .: ↦→ E ∈ Ω3 (Dynamic de�nition lookup)

lookup-k-kvar

?B ↦→ structS3E end ∈ Ω3 : = E ∈ S3E

?B .: ↦→ E ∈ Ω3

?B ↦→ MB ∈ ΩB (Static path lookup)

lookup-ps-var1

"B ↦→ [C](structSB end) ∈ Ω1;"B ↦→ [C](structSB end);Ω2

lookup-ps-var2

"B
′ ↦→ MB ∈ Ω1;C

"B ↦→ [C]MB ∈ Ω1;"B ↦→ [C]"B
′;Ω2

lookup-ps-var3

?B ."B
′ ↦→ MB ∈ Ω1;C

"B ↦→ [C]MB ∈ Ω1;"B ↦→ [C]?B ."B
′;Ω2

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:31

lookup-ps-path

?B ↦→ [C](structSB end) ∈ Ω "B = MB ∈ SB

?B ."B ↦→ [C](⌈MB⌉
?B) ∈ Ω

C is a subset of ΩB , so we also write ?B ↦→ MB ∈ C.

?B .< ↦→ E ∈ ΩB (Static de�nition lookup)

lookup-m-kvar

?B ↦→ [C]structSB end ∈ ΩB < = E ∈ SB

?B .< ↦→ [C]E ∈ ΩB

[C]E substitutes the macro de�nitions of C in E .

Pre�xing a path

Ω3 ⊢ ⌈M3⌉
?3 = ⌈M3⌉

S3E

?3
where ?3 ↦→ structS3E end ∈ Ω3

⌈M3⌉
•
?3

= M3

⌈M3⌉
def :=E;S3E

?3
= ⌈M3 [: ↦→ ?3 .:]⌉

S3E

?3

⌈M3⌉
mod"3=M3E ;S3E

?3
= ⌈M3 ["3 ↦→ ?3 ."3]⌉

S3E

?3

Ω3 ⊢ ⌈E⌉?3 = ⌈E⌉
S3E

?3
where ?3 ↦→ structS3E end ∈ Ω3

⌈E⌉•?3 = E

⌈E⌉
def :=E;S3E

?3
= ⌈E [: ↦→ ?3 .:]⌉

S3E

?3

⌈E⌉
mod"3=M3E ;S3E

?3
= ⌈E ["3 ↦→ ?3 ."3]⌉

S3E

?3

ΩB ⊢ ⌈E⌉?B = ⌈E⌉SB

?B where ?B ↦→ [C]structSB end ∈ ΩB

⌈E⌉•?B = E

⌈E⌉def
↓<=E;SB

?B = ⌈E [< ↦→ ?B .<]⌉
SB

?B

⌈E⌉mod"B=MB ;SB

?B = ⌈E ["B ↦→ ?B ."B]⌉
SB

?B

A.4 Elaboration

f1 Ω Γ ⊢ M { L M3 MB f2 (Elaborate module)
e-m-struct

f1 Ω Γ ⊢ S { S3 SB f2

f1 Ω Γ ⊢ structS end { • structS3 end structSB end f2

e-m-mvar

f Ω Γ ⊢ " { • "3 "B f

e-m-pmvar

f Ω Γ ⊢ ? { • ?3 ?B f

f Ω Γ ⊢ ?." { • ?3 ."3 ?B ."B f
e-m-functor

f Ω Γ ⊢ functor (" : Δ1).N { • struct • end ⟨Γ, functor(" : Δ1) . N⟩ f
e-m-app

f1 Ω Γ ⊢ F { L1 F3 FB f2 f2 Ω Γ ⊢ M { L2 M3 MB f3
f3 Ω ⊢ FB •M3 MB =⇒ L3 N3 NB f4

f1 Ω Γ ⊢ F M { L1;L2;L3 N3 NB f4

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

260:32 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

f1 Ω Γ ⊢ S { S3 SB f2 (Elaborate structure)

e-st-empty

f Ω Γ ⊢ • { • • f

e-st-def

f1 Ω ⊢c 4 { 4 f2 f2 Ω Γ, : : g ⊢ S { S3 SB f3

f1 Ω Γ ⊢ (def : = 4;S) { def : = 4;S3 SB f3
e-st-macro

f1 Ω ⊢c 4 { E f2 f2 Ω;< ↦→ E Γ,< : g ⊢ S { S3 SB f3

f1 Ω Γ ⊢ (def↓< = 4;S) { S3 def↓< = E ;SB f3
e-st-module

f1 Ω Γ ⊢ M { L M3 MB f2 f2 Ω;"B ↦→ (⌈MB⌉
"3) Γ, " : Δ ⊢ S { S3 SB f3

f1 Ω Γ ⊢ (mod" : Δ = M;S) { L;mod"3 = M3 ;S3 mod"B = ⌈MB⌉
"3 ;SB f3

f1 Ω ⊢ FB •M3 MB =⇒ L M3 MB f2 (Functor applications)

e-app-functor

f1 Ω;C;"B ↦→ ⌈MB⌉
"3 Γ, " : Δ1 ⊢ N { L N3 NB f2

f1 Ω ⊢ [C]⟨Γ, functor(" : Δ). N⟩ •M3 MB =⇒ mod"3 = M3 ;L N3 [C;"B ↦→ MB]NB f2
e-app-mvar1

"B ↦→ FB ∈ Ω f1 Ω ⊢ FB •M3 MB =⇒ L N3 NB f2

f1 Ω ⊢ [C]"B •M3 MB =⇒ L N3 NB f2
e-app-mvar2

"B ↦→ FB ∈ C f1 Ω ⊢ [C]FB •M3 MB =⇒ L N3 NB f2

f1 Ω ⊢ [C]"B •M3 MB =⇒ L N3 NB f2
e-app-pmvar1

?B ."B ↦→ FB ∈ Ω f1 Ω ⊢ ⌈FB⌉
?B •M3 MB =⇒ L N3 NB f2

f1 Ω ⊢ [C]?B ."B •M3 MB =⇒ L N3 NB f2
e-app-pmvar2

?B ."B ↦→ FB ∈ C f1 Ω ⊢ [C](⌈FB⌉
?B) •M3 MB =⇒ L N3 NB f2

f1 Ω ⊢ [C]?B ."B •M3 MB =⇒ L N3 NB f2

f1 Ω ⊢★ 4 { 4 f2 (Elaborate expression)

e-lit

f Ω ⊢★ 8 { 8 f

e-unit

f Ω ⊢★ unit { unit f

e-var

f Ω ⊢★ x { x f

e-kvar

f Ω ⊢★ : { : f

e-macro

f Ω ⊢★ < { < f

e-pkvar

: : g ∈ q

f Ω ⊢★ ?.: { (?)3 .: f

e-pmacro

f Ω ⊢★ ?.< { (?)B .< f
e-abs

f1 Ω ⊢★ 4 { 4 f2

f1 Ω ⊢★ _x : g1. 4 { _x : g . 4 f2

e-app

f1 Ω ⊢★ 41 { 41 f2 f2 Ω ⊢★ 42 { 42 f3

f1 Ω ⊢★ 41 42 { 41 42 f3
e-ref

f1 Ω ⊢★ 4 { 4 f2

f1 Ω ⊢★ ref 4 { ref 4 f2

e-get

f1 Ω ⊢★ 4 { 4 f2

f1 Ω ⊢★!4 {!4 f2
e-set

f1 Ω ⊢★ 41 { 41 f2 f2 Ω ⊢★ 42 { 42 f3

f1 Ω ⊢★ 41 := 42 { 41 := 42 f3

e-qote

f1 Ω ⊢q 4 { 4 f2

f1 Ω ⊢c∨s ⟨4⟩ { ⟨4⟩ f2
e-splice

f1 Ω ⊢s 4 { 4 f2

f1 Ω ⊢q $4 { $4 f2

e-codeGen

f1 Ω ⊢s 4 { 4 f2 f2 Ω 4 0−→
∗
⟨E1⟩ f3

f1 Ω ⊢c $4 { E1 f3

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

Staged Compilation with Module Functors 260:33

References

Andrew W. Appel and David B. MacQueen. 1994. Separate Compilation for Standard ML. In Proceedings of the ACM

SIGPLAN’94 Conference on Programming Language Design and Implementation (PLDI), Orlando, Florida, USA, June 20-24,

1994, Vivek Sarkar, Barbara G. Ryder, and Mary Lou So�a (Eds.). ACM, 13–23. https://doi.org/10.1145/178243.178245

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003. Implementing multi-stage languages using ASTs,

gensym, and re�ection. In International Conference on Generative Programming and Component Engineering. Springer,

57–76.

Jacques Carette, Mustafa Elsheikh, and W. Spencer Smith. 2011. A generative geometric kernel. In Proceedings of the 2011

ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM 2011, Austin, TX, USA, January 24-25,

2011, Siau-Cheng Khoo and Jeremy G. Siek (Eds.). ACM, 53–62. https://doi.org/10.1145/1929501.1929510

Jacques Carette and Oleg Kiselyov. 2005. Multi-stage Programming with Functors and Monads: Eliminating Abstraction

Overhead from Generic Code. In Generative Programming and Component Engineering, 4th International Conference,

GPCE 2005, Tallinn, Estonia, September 29 - October 1, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3676),

Robert Glück and Michael R. Lowry (Eds.). Springer, 256–274. https://doi.org/10.1007/11561347_18

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally tagless, partially evaluated: Tagless staged interpreters

for simpler typed languages. J. Funct. Program. 19, 5 (2009), 509–543. https://doi.org/10.1017/S0956796809007205

Karl Crary, Robert Harper, and Sidd Puri. 1999. What is a Recursive Module?. In Proceedings of the 1999 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), Atlanta, Georgia, USA, May 1-4, 1999, Barbara G.

Ryder and Benjamin G. Zorn (Eds.). ACM, 50–63. https://doi.org/10.1145/301618.301641

Rowan Davies. 1996. A Temporal-Logic Approach to Binding-Time Analysis. In Proceedings, 11th Annual IEEE Symposium

on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996. IEEE Computer Society, 184–195.

https://doi.org/10.1109/LICS.1996.561317

Rowan Davies and Frank Pfenning. 1996. A Modal Analysis of Staged Computation. In Conference Record of POPL’96: The

23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers Presented at the Symposium,

St. Petersburg Beach, Florida, USA, January 21-24, 1996, Hans-Juergen Boehm and Guy L. Steele Jr. (Eds.). ACM Press,

258–270. https://doi.org/10.1145/237721.237788

Daniel de Rauglaudre. 2007. Camlp5 - Reference Manual. Institut National de Recherche en Informatique et Automatique.

Derek R. Dreyer, Robert Harper, and Karl Crary. 2001. Toward a Practical Type Theory for Recursive Modules. Technical

Report CMU-CS-01-112. School of Computer Science, Carnegie Mellon University.

Martin Elsman. 1999. Static Interpretation of Modules. In Proceedings of the fourth ACM SIGPLAN International Conference on

Functional Programming (ICFP ’99), Paris, France, September 27-29, 1999, Didier Rémy and Peter Lee (Eds.). ACM, 208–219.

https://doi.org/10.1145/317636.317800

Matthew Flatt. 2002. Composable and Compilable Macros: You Want It When?. In Proceedings of the Seventh ACM SIGPLAN

International Conference on Functional Programming (Pittsburgh, PA, USA) (ICFP ’02). Association for Computing

Machinery, New York, NY, USA, 72–83. https://doi.org/10.1145/581478.581486

Steven E. Ganz, Amr Sabry, and Walid Taha. 2001. Macros as Multi-Stage Computations: Type-Safe, Generative, Binding

Macros in MacroML. In Proceedings of the Sixth ACM SIGPLAN International Conference on Functional Programming (ICFP

’01), Firenze (Florence), Italy, September 3-5, 2001, Benjamin C. Pierce (Ed.). ACM, 74–85. https://doi.org/10.1145/507635.

507646

Robert Harper, John C Mitchell, and Eugenio Moggi. 1989. Higher-order modules and the phase distinction. In Proceedings

of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 341–354.

Robert Harper and Christopher A. Stone. 2000. A type-theoretic interpretation of standard ML. In Proof, Language, and

Interaction, Essays in Honour of Robin Milner, Gordon D. Plotkin, Colin Stirling, and Mads Tofte (Eds.). The MIT Press,

341–388.

Jun Inoue, Oleg Kiselyov, and Yukiyoshi Kameyama. 2016. Staging beyond Terms: Prospects and Challenges. In Proceedings

of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (St. Petersburg, FL, USA) (PEPM

’16). Association for Computing Machinery, New York, NY, USA, 103–108. https://doi.org/10.1145/2847538.2847548

Junyoung Jang, Samuel Gélineau, Stefan Monnier, and Brigitte Pientka. 2022. Mœbius: metaprogramming using contextual

types: the stage where system f can pattern match on itself. Proc. ACM Program. Lang. 6, POPL (2022), 1–27. https:

//doi.org/10.1145/3498700

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml. In Functional and Logic Programming, Michael

Codish and Eijiro Sumii (Eds.). Springer International Publishing, Cham, 86–102. https://doi.org/10.1007/978-3-319-

07151-0_6

András Kovács. 2022. Staged compilation with two-level type theory. Proc. ACM Program. Lang. 6, ICFP (2022), 540–569.

https://doi.org/10.1145/3547641

Xavier Leroy. 1994. Manifest types, modules, and separate compilation. In Proceedings of the 21st ACM SIGPLAN-SIGACT

symposium on Principles of programming languages. 109–122.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

https://doi.org/10.1145/178243.178245
https://doi.org/10.1145/1929501.1929510
https://doi.org/10.1007/11561347_18
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/301618.301641
https://doi.org/10.1109/LICS.1996.561317
https://doi.org/10.1145/237721.237788
https://doi.org/10.1145/317636.317800
https://doi.org/10.1145/581478.581486
https://doi.org/10.1145/507635.507646
https://doi.org/10.1145/507635.507646
https://doi.org/10.1145/2847538.2847548
https://doi.org/10.1145/3498700
https://doi.org/10.1145/3498700
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1145/3547641

260:34 Tsung-Ju Chiang, Jeremy Yallop, Leo White, and Ningning Xie

John C. Mitchell and Robert Harper. 1988. The Essence of ML. In Conference Record of the Fifteenth Annual ACM Symposium

on Principles of Programming Languages, San Diego, California, USA, January 10-13, 1988, Jeanne Ferrante and Peter

Mager (Eds.). ACM Press, 28–46. https://doi.org/10.1145/73560.73563

Yuito Murase, Yuichi Nishiwaki, and Atsushi Igarashi. 2023. Contextual Modal Type Theory with Polymorphic Contexts. In

Programming Languages and Systems - 32nd European Symposium on Programming, ESOP 2023, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings (Lecture Notes

in Computer Science, Vol. 13990), Thomas Wies (Ed.). Springer, 281–308. https://doi.org/10.1007/978-3-031-30044-8_11

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal type theory. ACM Trans. Comput. Log.

9, 3 (2008), 23:1–23:49. https://doi.org/10.1145/1352582.1352591

Gabriel Radanne, Thomas Gazagnaire, Anil Madhavapeddy, Jeremy Yallop, Richard Mortier, Hannes Mehnert, Mindy Preston,

and David J. Scott. 2019. Programming Unikernels in the Large via Functor Driven Development. CoRR abs/1905.02529

(2019). arXiv:1905.02529 http://arxiv.org/abs/1905.02529

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A Pragmatic Approach to Runtime Code Generation

and Compiled DSLs. In Proceedings of the Ninth International Conference on Generative Programming and Component

Engineering (Eindhoven, The Netherlands) (GPCE ’10). ACM, New York, NY, USA, 127–136. https://doi.org/10.1145/

1868294.1868314

Andreas Rossberg. 2018. 1ML - Core and modules united. J. Funct. Program. 28 (2018), e22. https://doi.org/10.1017/

S0956796818000205

Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. 2014. F-ing modules. J. Funct. Program. 24, 5 (2014), 529–607.

https://doi.org/10.1017/S0956796814000264

Yuhi Sato and Yukiyoshi Kameyama. 2021. Type-Safe Generation of Modules in Applicative and Generative Styles. In

Proceedings of the 20th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences

(Chicago, IL, USA) (GPCE 2021). Association for Computing Machinery, New York, NY, USA, 184–196. https://doi.org/10.

1145/3486609.3487209

Yuhi Sato, Yukiyoshi Kameyama, and Takahisa Watanabe. 2020. Module Generation without Regret. In Proceedings of the

2020 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (New Orleans, LA, USA) (PEPM 2020).

Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3372884.3373160

Zhong Shao. 1997. An Overview of the FLINT/ML Compiler. Proc. 1997 ACM SIGPLANWorkshop on Types in Compilation

(TIC’97), Amsterdam, The Netherlands.

Zhong Shao. 1999. Transparent Modules with Fully Syntactic Signatures. In Proceedings of the fourth ACM SIGPLAN

International Conference on Functional Programming (ICFP ’99), Paris, France, September 27-29, 1999, Didier Rémy and

Peter Lee (Eds.). ACM, 220–232. https://doi.org/10.1145/317636.317801

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-Programming for Haskell. In Proceedings of the 2002 ACM

SIGPLAN Workshop on Haskell (Pittsburgh, Pennsylvania) (Haskell ’02). Association for Computing Machinery, New

York, NY, USA, 1–16. https://doi.org/10.1145/581690.581691

Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. 2018. A practical uni�cation of multi-stage programming and

macros. In Proceedings of the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts and

Experiences, GPCE 2018, Boston, MA, USA, November 5-6, 2018, Eric Van Wyk and Tiark Rompf (Eds.). ACM, 14–27.

https://doi.org/10.1145/3278122.3278139

Takashi Suwa and Atsushi Igarashi. 2024. An ML-Style Module System for Cross-Stage Type Abstraction in Multi-stage

Programming. In Functional and Logic Programming - 17th International Symposium, FLOPS 2024, Kumamoto, Japan, May

15-17, 2024, Proceedings (Lecture Notes in Computer Science, Vol. 14659), Jeremy Gibbons and Dale Miller (Eds.). Springer,

237–272. https://doi.org/10.1007/978-981-97-2300-3_13

Kenichi Suzuki, Oleg Kiselyov, and Yukiyoshi Kameyama. 2016. Finally, safely-extensible and e�cient language-integrated

query. In Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM 2016,

St. Petersburg, FL, USA, January 20 - 22, 2016, Martin Erwig and Tiark Rompf (Eds.). ACM, 37–48. https://doi.org/10.1145/

2847538.2847542

Don Syme. 2006. Leveraging. NET meta-programming components from F# integrated queries and interoperable heteroge-

neous execution. In Proceedings of the 2006 workshop on ML. 43–54.

Walid Taha. 1999. Multi-Stage Programming: Its Theory and Applications. Ph. D. Dissertation. Halmstad University, Sweden.

https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-15052

Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. 1998. Multi-stage programming: Axiomatization and type safety. In

International Colloquium on Automata, Languages, and Programming. Springer, 918–929.

Walid Taha and Patricia Johann. 2003. Staged Notational De�nitions. In Generative Programming and Component Engineering,

Second International Conference, GPCE 2003, Erfurt, Germany, September 22-25, 2003, Proceedings (Lecture Notes in Computer

Science, Vol. 2830), Frank Pfenning and Yannis Smaragdakis (Eds.). Springer, 97–116. https://doi.org/10.1007/978-3-540-

39815-8_6

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

https://doi.org/10.1145/73560.73563
https://doi.org/10.1007/978-3-031-30044-8_11
https://doi.org/10.1145/1352582.1352591
https://arxiv.org/abs/1905.02529
http://arxiv.org/abs/1905.02529
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1017/S0956796818000205
https://doi.org/10.1017/S0956796818000205
https://doi.org/10.1017/S0956796814000264
https://doi.org/10.1145/3486609.3487209
https://doi.org/10.1145/3486609.3487209
https://doi.org/10.1145/3372884.3373160
https://doi.org/10.1145/317636.317801
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1007/978-981-97-2300-3_13
https://doi.org/10.1145/2847538.2847542
https://doi.org/10.1145/2847538.2847542
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-15052
https://doi.org/10.1007/978-3-540-39815-8_6
https://doi.org/10.1007/978-3-540-39815-8_6

Staged Compilation with Module Functors 260:35

Peter Thiemann. 1999. Interpreting Specialization in Type Theory. In Proceedings of the 1999 ACM SIGPLAN Workshop on

Partial Evaluation and Semantics-Based Program Manipulation, San Antonio, Texas, USA, January 22-23, 1999. Technical

report BRICS-NS-99-1, Olivier Danvy (Ed.). University of Aarhus, 30–43.

Ryo Tokuda and Yukiyoshi Kameyama. 2023. Generating Programs for PolynomialMultiplicationwith Correctness Assurance.

In Proceedings of the 2023 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation,

PEPM 2023, Boston, MA, USA, January 16-17, 2023, Edwin C. Brady and Jens Palsberg (Eds.). ACM, 27–40. https:

//doi.org/10.1145/3571786.3573017

Takahisa Watanabe and Yukiyoshi Kameyama. 2018. Program generation for ML modules (short paper). In Proceedings of

the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, Los Angeles, CA, USA, January 8-9, 2018,

Fritz Henglein and Hsiang-Shang Ko (Eds.). ACM, 60–66. https://doi.org/10.1145/3162072

Stephen Weeks. 2006. Whole-program compilation in MLton. In Proceedings of the 2006 Workshop on ML (Portland, Oregon,

USA) (ML ’06). Association for Computing Machinery, New York, NY, USA, 1. https://doi.org/10.1145/1159876.1159877

Stefan Wehr and Manuel M. T. Chakravarty. 2008. ML Modules and Haskell Type Classes: A Constructive Comparison. In

Programming Languages and Systems, 6th Asian Symposium, APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings

(Lecture Notes in Computer Science, Vol. 5356), G. Ramalingam (Ed.). Springer, 188–204. https://doi.org/10.1007/978-3-540-

89330-1_14

Leo White. 2013. Extension points for OCaml. OCaml Users and Developers Workshop.

Leo White, Frédéric Bour, and Jeremy Yallop. 2014. Modular implicits. In Proceedings ML Family/OCaml Users and Developers

workshops, ML/OCaml 2014, Gothenburg, Sweden, September 4-5, 2014 (EPTCS, Vol. 198), Oleg Kiselyov and Jacques

Garrigue (Eds.). 22–63. https://doi.org/10.4204/EPTCS.198.2

Andrew K Wright and Matthias Felleisen. 1994. A syntactic approach to type soundness. Information and computation 115,

1 (1994), 38–94.

Ningning Xie, Matthew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang. 2022. Staging with Class:

A Speci�cation for Typed Template Haskell. Proc. ACM Program. Lang. 6, POPL, Article 61 (jan 2022), 30 pages.

https://doi.org/10.1145/3498723

Ningning Xie, Leo White, Olivier Nicole, and Jeremy Yallop. 2023. MacoCaml: Staging Composable and Compilable Macros.

Proc. ACM Program. Lang. 7, ICFP, Article 209 (aug 2023), 45 pages. https://doi.org/10.1145/3607851

Jeremy Yallop. 2017. Staged generic programming. Proc. ACM Program. Lang. 1, ICFP (2017), 29:1–29:29. https://doi.org/10.

1145/3110273

Jeremy Yallop, David Sheets, and Anil Madhavapeddy. 2018a. A modular foreign function interface. Sci. Comput. Program.

164 (2018), 82–97. https://doi.org/10.1016/J.SCICO.2017.04.002

Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018b. Partially-static data as free extension of algebras. Proc. ACM

Program. Lang. 2, ICFP (2018), 100:1–100:30. https://doi.org/10.1145/3236795

Received 2024-02-28; accepted 2024-06-18

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 260. Publication date: August 2024.

https://doi.org/10.1145/3571786.3573017
https://doi.org/10.1145/3571786.3573017
https://doi.org/10.1145/3162072
https://doi.org/10.1145/1159876.1159877
https://doi.org/10.1007/978-3-540-89330-1_14
https://doi.org/10.1007/978-3-540-89330-1_14
https://doi.org/10.4204/EPTCS.198.2
https://doi.org/10.1145/3498723
https://doi.org/10.1145/3607851
https://doi.org/10.1145/3110273
https://doi.org/10.1145/3110273
https://doi.org/10.1016/J.SCICO.2017.04.002
https://doi.org/10.1145/3236795

	Abstract
	1 Introduction
	2 Overview
	2.1 Background: Compile-Time Code Generation in MacoCaml
	2.2 Combining Compile-Time Computations with Functors
	2.3 Our Approach

	3 A Macro Calculus with Staging and Module Functors
	3.1 Syntax
	3.2 Typing Rules

	4 Compilation Target
	4.1 Syntax
	4.2 Typing
	4.3 Dynamic Semantics
	4.4 Type Soundness

	5 Elaboration
	5.1 Compile-Time Code Generation
	5.2 Elaboration of Modules
	5.3 Elaboration of Structures
	5.4 Example

	6 Metatheory
	6.1 Elaboration Soundness and Phase Distinction
	6.2 Phase Distinction
	6.3 Elaboration Preserves Semantics

	7 Extensions
	8 Integration into OCaml
	8.1 Compilation of Functors: Parameterization vs Instantiation
	8.2 Compilation of Functors Involving Macros

	9 Related Work
	9.1 Combining Modules with Staged Definitions
	9.2 Staging Modules
	9.3 Typed Quotation-Based Macros
	9.4 Multi-Stage Programming with Functors
	9.5 Module Elaboration and Phase Splitting

	10 Conclusion
	Acknowledgments
	A Complete Rules
	A.1 Source Typing
	A.2 Core Typing
	A.3 Core Dynamic Semantics
	A.4 Elaboration

	References

